Aggregation affects optical properties and photothermal heating of gold nanospheres

Yiru Wang, Zhe Gao, Zonghu Han, Yilin Liu, Huan Yang, Taner Akkin, Christopher J. Hogan, John C. Bischof

Research output: Contribution to journalArticlepeer-review

25 Scopus citations

Abstract

Laser heating of gold nanospheres (GNS) is increasingly prevalent in biomedical applications due to tunable optical properties that determine heating efficiency. Although many geometric parameters (i.e. size, morphology) can affect optical properties of individual GNS and their heating, no specific studies of how GNS aggregation affects heating have been carried out. We posit here that aggregation, which can occur within some biological systems, will significantly impact the optical and therefore heating properties of GNS. To address this, we employed discrete dipole approximation (DDA) simulations, Ultraviolet–Visible spectroscopy (UV–Vis) and laser calorimetry on GNS primary particles with diameters (5, 16, 30 nm) and their aggregates that contain 2 to 30 GNS particles. DDA shows that aggregation can reduce the extinction cross-section on a per particle basis by 17–28%. Experimental measurement by UV–Vis and laser calorimetry on aggregates also show up to a 25% reduction in extinction coefficient and significantly lower heating (~ 10%) compared to dispersed GNS. In addition, comparison of select aggregates shows even larger extinction cross section drops in sparse vs. dense aggregates. This work shows that GNS aggregation can change optical properties and reduce heating and provides a new framework for exploring this effect during laser heating of nanomaterial solutions.

Original languageEnglish (US)
Article number898
JournalScientific reports
Volume11
Issue number1
DOIs
StatePublished - Jan 13 2021

Bibliographical note

Publisher Copyright:
© 2021, The Author(s).

PubMed: MeSH publication types

  • Journal Article

Fingerprint

Dive into the research topics of 'Aggregation affects optical properties and photothermal heating of gold nanospheres'. Together they form a unique fingerprint.

Cite this