Aggregate characteristics accounting for the evolving fractal-like structure during coagulation and sintering

Eirini Goudeli, Maximilian L. Eggersdorfer, Sotiris E. Pratsinis

Research output: Contribution to journalArticlepeer-review

20 Scopus citations


Coagulation and partial coalescence (or sintering) frequently results in fractal-like aerosol structures in natural and industrial processes. The asymptotic form of such structures is described reasonably well with the so-called fractal dimension, Df. Little is known, however, for its evolution, from spheres to fractal-like particles and, in particular, its effect on aerosol primary particle and collision diameters that determine the environmental impact or manufactured product performance. So the effect of a variable or constant Df on product crystalline (TiO2) and amorphous (SiO2) aerosol particle characteristics is elucidated over their process synthesis parameter space ( maximum temperature 1600-2000K, cooling rate 103-106K/s and precursor molar fraction 10-4-10-1). Aerosol dynamics by coagulation and sintering are simulated accounting for the evolving fractal-like structure by either a linear interpolation or detailed mesoscale simulations from spherical to asymptotic fractal-like structures. In addition, two sintering rates for SiO2 as well as expressions for the effect of particle structure on sintering rate are compared in terms of product particle characteristics. Neglecting the evolution of Df hardly affects the product primary particle and soft-agglomerate diameters but overestimates the agglomerate collision diameter growth rate during the hard- to soft-agglomerate transition. This underpredicts the hard-agglomerate diameter by 25-30% at high cooling rates (105-106K/s).

Original languageEnglish (US)
Pages (from-to)58-68
Number of pages11
JournalJournal of Aerosol Science
StatePublished - Nov 1 2015

Bibliographical note

Funding Information:
This research was funded by the Swiss National Science Foundation (Grant nos. 200021_149144 and 148643 ) and the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007–2013, ERC Grant agreement no. 247283 ). E. Goudeli received a best poster award for an early version of this research at the 2013 European Aerosol Conference in Prague, Czech Republic, September 1–6.


  • Aerosol dynamics
  • Coagulation and sintering
  • Fractal dimension
  • Hard- and soft-agglomerates


Dive into the research topics of 'Aggregate characteristics accounting for the evolving fractal-like structure during coagulation and sintering'. Together they form a unique fingerprint.

Cite this