Advancing rational control of peptide−surface complexes

Siva Dasetty, Sapna Sarupria

Research output: Contribution to journalArticlepeer-review

3 Scopus citations


Understanding peptide−surface interactions is crucial for programming self-assembly of peptides at surfaces and in realizing their applications, such as biosensors and biomimetic materials. In this study, we developed insights into the dependence of a residue's interaction with a surface on its neighboring residue in a tripeptide using molecular dynamics simulations. This knowledge is integral for designing rational mutations to control peptide−surface complexes. Using graphene as our model surface, we estimated the free energy of adsorption (ΔAads) and extracted predominant conformations of 26 tripeptides with the motif LNR−CR−Gly, where LNR and CR are variable left-neighboring and central residues, respectively. We considered a combination of strongly adsorbing (Phe, Trp, and Arg) and weakly adsorbing (Ala, Val, Leu, Ser, and Thr) amino acids on graphene identified in a prior study to form the tripeptides. Our results indicate that ΔAads of a tripeptide cannot be estimated as the sum of ΔAads of each residue indicating that the residues in a tripeptide do not behave as independent entities. We observed that the contributions from the strongly adsorbing amino acids were dominant, which suggests that such residues could be used for strengthening peptide−graphene interactions irrespective of their neighboring residues. In contrast, the adsorption of weakly adsorbing central residues is dependent on their neighboring residues. Our structural analysis revealed that the dihedral angles of LNR are more correlated with that of CR in the adsorbed state than in bulk state. Together with ΔAads trends, this implies that different backbone structures of a given CR can be accessed for a similar ΔAads by varying the LNR. Therefore, incorporation of context effects in designing mutations can lead to desired peptide structure at surfaces. Our results also emphasize that these cooperative effects in ΔAads and structure are not easily predicted a priori. The collective results have applications in guiding rational mutagenesis techniques to control orientation of peptides at surfaces and in developing peptide structure prediction algorithms in adsorbed state from its sequence.

Original languageEnglish (US)
Pages (from-to)2644-2657
Number of pages14
JournalJournal of Physical Chemistry B
Issue number10
StatePublished - Mar 18 2021
Externally publishedYes

Bibliographical note

Funding Information:
S.S. acknowledges the financial support, in part, by the Defense Threat Reduction Agency (HDTRA-1-16-1-0023), and Clemson University start-up funds. We thank the Clemson Cyberinfrastructure Technology Integration group for the allotment of computing time on Palmetto cluster.

Publisher Copyright:
© 2021 American Chemical Society

PubMed: MeSH publication types

  • Journal Article
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.


Dive into the research topics of 'Advancing rational control of peptide−surface complexes'. Together they form a unique fingerprint.

Cite this