Abstract
Transient energy growth (TEG) is a primary mechanism for bypass transition in many wall-bounded shear flows. Here, we investigate the efficacy of reducing TEG in a linearized channel flow with feedback controllers that use wall shear-stress sensors and wall-normal blowing/suction actuators. Owing to established performance limitations of observer-based controller designs within the context of TEG, we study static output feedback linear quadratic regulation (SOF-LQR) strategies for control. SOF-LQR is found to outperform optimal observer-based feedback designs, and to reduce TEG of spanwise disturbances relative to the uncontrolled flow. We further show that by introducing an appropriate set of additional observables, SOF-LQR controllers can reduce TEG associated with streamwise and oblique disturbances as well. In fact, we show that by selecting a small number of appropriate observables, SOF-LQR controllers can fully recover full-state LQR performance.
Original language | English (US) |
---|---|
Title of host publication | AIAA Scitech 2019 Forum |
Publisher | American Institute of Aeronautics and Astronautics Inc, AIAA |
ISBN (Print) | 9781624105784 |
DOIs | |
State | Published - Jan 1 2019 |
Event | AIAA Scitech Forum, 2019 - San Diego, United States Duration: Jan 7 2019 → Jan 11 2019 |
Publication series
Name | AIAA Scitech 2019 Forum |
---|
Conference
Conference | AIAA Scitech Forum, 2019 |
---|---|
Country/Territory | United States |
City | San Diego |
Period | 1/7/19 → 1/11/19 |
Bibliographical note
Publisher Copyright:© 2019, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.