TY - JOUR
T1 - Adenovirus-mediated overexpression of liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase in gluconeogenic rat hepatoma cells
T2 - Paradoxical effect on Fru-2,6-P2 levels
AU - Argaud, Doriane
AU - Lange, Alex J
AU - Becker, Thomas C.
AU - Okar, David A.
AU - El-Maghrabi, M. Raafat
AU - Newgard, Christopher B.
AU - Pilkis, Simon J.
N1 - Copyright:
Copyright 2017 Elsevier B.V., All rights reserved.
PY - 1995/10/13
Y1 - 1995/10/13
N2 - 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase has been postulated to be a metabolic signaling enzyme, which acts as a switch between glycolysis and gluconeogenesis in mammalian liver by regulating the level of fructose 2,6-bisphosphate. The effect of overexpressing the bifunctional enzyme was studied in FAO cells transduced with recombinant adenoviral constructs of either the wild-type enzyme or a double mutant that has no bisphosphatase activity or protein kinase phosphorylation site. With both constructs, the mRNA and protein were overexpressed by 150- and 40-fold, respectively. Addition of cAMP to cells overexpressing the wild-type enzyme increased the S0.5 for fructose 6-phosphate of the kinase by 1.5-fold but had no effect on the overexpressed double mutant. When the wild-type enzyme was overexpressed, there was a decrease in fructose 2,6-bisphosphate levels, even though 6-phosphofructo-2-kinase maximal activity increased more than 22-fold and was in excess of fructose-2,6-bisphosphatase maximal activity. The kinase:bisphosphatase maximal activity ratio was decreased, indicating that the overexpressed enzyme was phosphorylated by cAMP-dependent protein kinase. Overexpression of the double mutant resulted in a 28-fold increase in kinase maximal activity and a 3-4-fold increase in fructose 2,6-bisphosphate levels. Overexpression of this form inhibited the rate of glucose production from dihydroxyacetone by 90% and stimulated the rate of lactate plus pyruvate production by 200%. In contrast, Overexpression of the wild-type enzyme enhanced glucose production and inhibited lactate plus pyruvate production. These results provide direct support for fructose 2,6-bisphosphate as a regulator of gluconeogenic/glycolytic pathway flux and suggest that regulation of bifunctional enzyme activities by covalent modification is more important than the amount of the protein.
AB - 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase has been postulated to be a metabolic signaling enzyme, which acts as a switch between glycolysis and gluconeogenesis in mammalian liver by regulating the level of fructose 2,6-bisphosphate. The effect of overexpressing the bifunctional enzyme was studied in FAO cells transduced with recombinant adenoviral constructs of either the wild-type enzyme or a double mutant that has no bisphosphatase activity or protein kinase phosphorylation site. With both constructs, the mRNA and protein were overexpressed by 150- and 40-fold, respectively. Addition of cAMP to cells overexpressing the wild-type enzyme increased the S0.5 for fructose 6-phosphate of the kinase by 1.5-fold but had no effect on the overexpressed double mutant. When the wild-type enzyme was overexpressed, there was a decrease in fructose 2,6-bisphosphate levels, even though 6-phosphofructo-2-kinase maximal activity increased more than 22-fold and was in excess of fructose-2,6-bisphosphatase maximal activity. The kinase:bisphosphatase maximal activity ratio was decreased, indicating that the overexpressed enzyme was phosphorylated by cAMP-dependent protein kinase. Overexpression of the double mutant resulted in a 28-fold increase in kinase maximal activity and a 3-4-fold increase in fructose 2,6-bisphosphate levels. Overexpression of this form inhibited the rate of glucose production from dihydroxyacetone by 90% and stimulated the rate of lactate plus pyruvate production by 200%. In contrast, Overexpression of the wild-type enzyme enhanced glucose production and inhibited lactate plus pyruvate production. These results provide direct support for fructose 2,6-bisphosphate as a regulator of gluconeogenic/glycolytic pathway flux and suggest that regulation of bifunctional enzyme activities by covalent modification is more important than the amount of the protein.
UR - http://www.scopus.com/inward/record.url?scp=0028825385&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0028825385&partnerID=8YFLogxK
U2 - 10.1074/jbc.270.41.24229
DO - 10.1074/jbc.270.41.24229
M3 - Article
C2 - 7592629
AN - SCOPUS:0028825385
SN - 0021-9258
VL - 270
SP - 24229
EP - 24236
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 41
ER -