TY - JOUR
T1 - Adenovirus-mediated expression of the catalytic subunit of glucose-6- phosphatase in INS-1 cells. Effects on glucose cycling, glucose usage, and insulin secretion
AU - Trinh, Khiet
AU - Minassian, Carol
AU - Lange, Alex J.
AU - O'Doherty, Robert M.
AU - Newgard, Christopher B.
PY - 1997/10/3
Y1 - 1997/10/3
N2 - Glucose-6-phosphatase (Glu-6-Pase) catalyzes the terminal step of gluconeogenesis, the conversion of glucose 6-phosphate (Glu-6-P) to free glucose. This enzyme activity is thought to be conferred by a complex of proteins residing in the endoplasmic reticulum (ER), including a Glu-6-P translocase that transports Glu-6-P into the lumen of the ER, a phosphohydrolase catalytic subunit residing in the lumen, and putative glucose and inorganic phosphate transporters that allow exit of the products of the reaction. In this study, we have investigated the effect of adenovirus-mediated overexpression of the Glu-6-Pase catalytic subunit on glucose metabolism and insulin secretion, using a well differentiated insulinoma cell line, INS-1. We found that the overexpressed Glu-6-Pase catalytic subunit was normally glycosylated, correctly sorted to the ER, and caused a 10-fold increase in Glu-6-Pase enzymatic activity in in vitro assays. Consistent with these findings, a 4.2-fold increase in 3H2O incorporation into glucose was observed in INS-1 cells treated with the recombinant adenovirus containing the Glu-6-Pase catalytic subunit cDNA (AdCMV-Glu-6-Pase). 3-[3H]Glucose usage was decreased by 32% in AdCMV-Glu- 6-Pase-treated cells relative to controls, resulting in a proportional 30% decrease in glucose-stimulated insulin secretion. Our findings indicate that overexpression of the Glu-6-Pase catalytic subunit significantly impacts glucose metabolism and insulin secretion in islet β-cells. However, INS-1 cells treated with AdCMV-Glu-6-Pase do not exhibit the severe alterations of β-cell function and metabolism associated with islets from rodent models of obesity and non-insulin-dependent diabetes mellitus, suggesting the involvement of genes in addition to the catalytic subunit of Glu-6-Pase in the etiology of such β-cell dysfunction.
AB - Glucose-6-phosphatase (Glu-6-Pase) catalyzes the terminal step of gluconeogenesis, the conversion of glucose 6-phosphate (Glu-6-P) to free glucose. This enzyme activity is thought to be conferred by a complex of proteins residing in the endoplasmic reticulum (ER), including a Glu-6-P translocase that transports Glu-6-P into the lumen of the ER, a phosphohydrolase catalytic subunit residing in the lumen, and putative glucose and inorganic phosphate transporters that allow exit of the products of the reaction. In this study, we have investigated the effect of adenovirus-mediated overexpression of the Glu-6-Pase catalytic subunit on glucose metabolism and insulin secretion, using a well differentiated insulinoma cell line, INS-1. We found that the overexpressed Glu-6-Pase catalytic subunit was normally glycosylated, correctly sorted to the ER, and caused a 10-fold increase in Glu-6-Pase enzymatic activity in in vitro assays. Consistent with these findings, a 4.2-fold increase in 3H2O incorporation into glucose was observed in INS-1 cells treated with the recombinant adenovirus containing the Glu-6-Pase catalytic subunit cDNA (AdCMV-Glu-6-Pase). 3-[3H]Glucose usage was decreased by 32% in AdCMV-Glu- 6-Pase-treated cells relative to controls, resulting in a proportional 30% decrease in glucose-stimulated insulin secretion. Our findings indicate that overexpression of the Glu-6-Pase catalytic subunit significantly impacts glucose metabolism and insulin secretion in islet β-cells. However, INS-1 cells treated with AdCMV-Glu-6-Pase do not exhibit the severe alterations of β-cell function and metabolism associated with islets from rodent models of obesity and non-insulin-dependent diabetes mellitus, suggesting the involvement of genes in addition to the catalytic subunit of Glu-6-Pase in the etiology of such β-cell dysfunction.
UR - http://www.scopus.com/inward/record.url?scp=0030825183&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0030825183&partnerID=8YFLogxK
U2 - 10.1074/jbc.272.40.24837
DO - 10.1074/jbc.272.40.24837
M3 - Article
C2 - 9312082
AN - SCOPUS:0030825183
SN - 0021-9258
VL - 272
SP - 24837
EP - 24842
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 40
ER -