Adaptive Landmark Color for AUV Docking in Visually Dynamic Environments

Corey Knutson, Zhipeng Cao, Junaed Sattar

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Autonomous Underwater Vehicles (AUVs) conduct missions underwater without the need for human intervention. A docking station (DS) can extend mission times of an AUV by providing a location for the AUV to recharge its batteries and receive updated mission information. Various methods for locating and tracking a DS exist, but most rely on expensive acoustic sensors, or are vision-based, which is significantly affected by water quality. In this paper, we present a vision-based method that utilizes adaptive color LED markers and dynamic color filtering to maximize landmark visibility in varying water conditions. Both AUV and DS utilize cameras to determine the water background color in order to calculate the desired marker color. No communication between AUV and DS is needed to determine marker color. Experiments conducted in a pool and lake show our method performs 10 times better than static color thresholding methods as background color varies. DS detection is possible at a range of 5 meters in clear water with minimal false positives.

Original languageEnglish (US)
Title of host publication2024 IEEE International Conference on Robotics and Automation, ICRA 2024
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages9990-9996
Number of pages7
ISBN (Electronic)9798350384574
DOIs
StatePublished - 2024
Event2024 IEEE International Conference on Robotics and Automation, ICRA 2024 - Yokohama, Japan
Duration: May 13 2024May 17 2024

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Conference

Conference2024 IEEE International Conference on Robotics and Automation, ICRA 2024
Country/TerritoryJapan
CityYokohama
Period5/13/245/17/24

Bibliographical note

Publisher Copyright:
© 2024 IEEE.

Fingerprint

Dive into the research topics of 'Adaptive Landmark Color for AUV Docking in Visually Dynamic Environments'. Together they form a unique fingerprint.

Cite this