Acyl-chloride quenching following interfacial polymerization to modulate the water permeability, selectivity, and surface charge of desalination membranes

Jay Werber, Sarah K. Bull, Menachem Elimelech

Research output: Contribution to journalArticlepeer-review

60 Scopus citations


Fully aromatic polyamide thin-film composite (TFC) membranes are the industry standard for membrane-based desalination. Due to the extensive application of TFC membranes to treat feed waters of widely varying composition, new methods are needed to modulate the water permeability, water–solute selectivity, and surface charge of the polyamide selective layer. In this study, the quenching of residual acyl-chloride groups in nascent polyamide films is performed using amine, ammonia, and alcohol solutions, including common alcohol solvents such as methanol and ethanol. Membrane transport characterization in reverse osmosis demonstrates that quenching can substantially increase water permeability. For example, quenching in ammonium hydroxide resulted in water permeability of 2.50 L m−2 h−1 bar−1, which was 2.8 times greater than that for water-quenched control membranes, paired with a small decrease in sodium chloride rejection from 99.7% to 99.3%. By using different quenching solutions, quenching resulted in a range of water permeabilities (0.15–2.50 L m−2 h−1 bar−1) and water–salt selectivities (98.4–99.7% salt rejection), with performance falling along a previously proposed permeability–selectivity trade-off. Transport behavior and surface characterization indicate that chemical reactions occur to form amides and esters during quenching. Additionally, quenching decreased the carboxyl group density from 25.5 sites/nm2 for water-quenched control membranes to 11.8 sites/nm2 for membranes quenched in ammonium hydroxide. Taken together, the results demonstrate that acyl-chloride quenching provides a novel route to alter the surface charge in addition to water permeability and water–salt selectivity. Potential ways to further optimize the method are discussed.

Original languageEnglish (US)
Pages (from-to)357-364
Number of pages8
JournalJournal of Membrane Science
StatePublished - 2017

Bibliographical note

Funding Information:
We acknowledge the support received from the National Science Foundation (NSF) through the Engineering Research Center for Nanotechnology-Enabled Water Treatment (ERC-1449500) and via Grant CBET 1437630. Facilities used for SEM and AFM were supported by the Yale Institute of Nanoscale and Quantum Engineering (YINQE) under NSF MRSEC DMR 1119826. We also acknowledge the NSF Graduate Research Fellowship awarded to J.R.W.

Publisher Copyright:
© 2017 Elsevier B.V.


  • Acyl chloride
  • Permeability
  • Permeability–selectivity trade-off
  • Polyamide thin-film composite membranes
  • Surface charge


Dive into the research topics of 'Acyl-chloride quenching following interfacial polymerization to modulate the water permeability, selectivity, and surface charge of desalination membranes'. Together they form a unique fingerprint.

Cite this