Abstract
Background: Hypoglycemia (HG) is common in intrauterine growth restricted (IUGR) neonates. In normally grown (NG) neonatal rats, acute HG causes neuronal injury in the brain; the cerebral cortex is more vulnerable than the hippocampus (HPC). We hypothesized that the IUGR brain is less vulnerable to HG-induced injury while preserving regional variation in vulnerability.Methods:We induced IUGR via bilateral uterine artery ligation on gestational day 19 (term 22 d) rats. On postnatal day 14, insulin-induced HG of equivalent severity and duration (blood glucose < 40 mg/dl for 240 min) was produced in IUGR and NG (IUGR/HG and NG/HG). Neuronal injury in the cortex and HPC was quantified 6-72 h later using Fluoro-Jade B (FJB) histochemistry. The mRNA expression of monocarboxylate transporters, MCT1 and MCT2, and glucose transporters, GLUT1 and GLUT3, was determined using quantitative PCR.Results:There were fewer FJB-positive (FJB+) cells in the cortex of IUGR/HG; no difference was observed in FJB+ cells in HPC. Core body temperature was lower in IUGR/HG compared with NG/HG. MCT2 expression was increased in the IUGR cortex.Conclusion:HG-induced neuronal injury is decreased in the cortex of the developing IUGR brain. Adaptations including systemic hypothermia and enhanced delivery of alternative substrates via MCT2 might protect against HG-induced neuronal injury in IUGR.
Original language | English (US) |
---|---|
Pages (from-to) | 7-13 |
Number of pages | 7 |
Journal | Pediatric Research |
Volume | 78 |
Issue number | 1 |
DOIs | |
State | Published - Jul 20 2015 |
Bibliographical note
Publisher Copyright:© 2015 International Pediatric Research Foundation, Inc.