Abstract
In this work, we present a method to estimate the planar mass distribution of a rigid object through robotic interactions and force/torque feedback. This is a challenging problem because of the complexity of modeling physical dynamics and the action dependencies across the model parameters. We propose a sequential estimation strategy combined with a set of robot action selection rules based on the analytical formulation of a discrete-time dynamics model. To evaluate the performance of our approach, we also manufactured re-configurable block objects that allow us to modify the object mass distribution while having access to the ground truth values. We compare our approach against multiple baselines and show that it can estimate the mass distribution with around 10% error, while the baselines have errors ranging from 18% to 68%.
Original language | English (US) |
---|---|
Title of host publication | 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2023 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 10785-10791 |
Number of pages | 7 |
ISBN (Electronic) | 9781665491907 |
DOIs | |
State | Published - 2023 |
Event | 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2023 - Detroit, United States Duration: Oct 1 2023 → Oct 5 2023 |
Publication series
Name | IEEE International Conference on Intelligent Robots and Systems |
---|---|
ISSN (Print) | 2153-0858 |
ISSN (Electronic) | 2153-0866 |
Conference
Conference | 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2023 |
---|---|
Country/Territory | United States |
City | Detroit |
Period | 10/1/23 → 10/5/23 |
Bibliographical note
Publisher Copyright:© 2023 IEEE.