Active control of sound reflection, absorption and transmission using thin panels

Research output: Contribution to journalArticlepeer-review

1 Scopus citations


This study explores the development of thin panels that can be controlled electronically so as to provide surfaces with desired reflection coefficients. Such panels can be used as either perfect reflectors or absorbers. They can also be designed to be transmission blockers that block the propagation of sound. The development of the control system is based on the use of wave separation algorithms that separate incident sound from reflected sound. In order to obtain a desired, reflection coefficient, the reflected sound is controlled to appropriate levels. The incident sound is used as an acoustic reference for feedforward control and has the important property of being isolated from the action of the control system speaker. In order to use a paner as a transmission blocker, the acoustic pressure behind the panel is driven to zero. Detailed experimental results are presented showing the efficacy of the algorithms in achieving real-time control of reflection or transmission. The panels are able to effectively block transmission of broadband sound. Practical applications for these panels include enclosures for noisy machinery, noise absorbing wallpaper, the development of sound walls and the development of noise-blocking glass windows.

Original languageEnglish (US)
Pages (from-to)8-20
Number of pages13
JournalNoise and Vibration Worldwide
Issue number5
StatePublished - May 2004


Dive into the research topics of 'Active control of sound reflection, absorption and transmission using thin panels'. Together they form a unique fingerprint.

Cite this