Active Compression-Decompression: A New Method of Cardiopulmonary Resuscitation

Todd J. Cohen, Kelly J. Tucker, Keith G. Lurie, Rita F. Redberg, John P. Dutton, Kathy A. Dwyer, Theresa M. Schwab, Michael C. Chin, Alan M. Gelb, Melvin M. Scheinman, Nelson B. Schiller, Michael L. Callaham, Cardiopulmonary Resuscitation Working Group

Research output: Contribution to journalArticlepeer-review

229 Scopus citations


Objective. —To describe and compare with standard cardiopulmonary resuscitation (CPR) in humans a new form of CPR that involves both active compression and active decompression of the chest. Design. —Patients in cardiac arrest in whom standard advanced cardiac life support failed were randomized to receive 2 minutes of either standard or active compression-decompression (ACD) CPR using a custom, hand-held suction device, followed by 2 minutes of the alternate technique. The ACD device was applied midsternum and used to perform CPR according to the guidelines of the American Heart Association: 80 compressions per minute, compression depth of 3.8 to 5 cm, 50% duty cycle, and constant-volume ventilation. Mechanical Thumper CPR was also compared in five patients. End-tidal carbon dioxide (ETco2) concentrations and hemodynamic variables were measured. Transesophageal Doppler echocardiography was used to assess contractility, the velocity time integral (an analogue of cardiac output), and diastolic myocardial filling times. Results. —Ten patients were enrolled. The mean±SD ETco2 was 4.3±3.8 mm Hg with standard CPR and 9.0±3.9 mm Hg with ACD CPR (P<.0001). Systolic arterial pressure with standard CPR was 52.5±14.0 mm Hg and with ACD CPR, 88.9±24.7 mm Hg (P<.003). The velocity time integral increased from 7.3±2.6 cm with standard CPR to 17.5±5.6 cm with ACD CPR (P<.0001), and diastolic filling times increased from 0.23±09 seconds with standard CPR to 0.37±12 seconds with ACD CPR (P<.004). Mechanical Thumper CPR consistently underperformed both standard and ACD CPR. Minute ventilation obtained in four patients during ACD CPR without endotracheal ventilation was 6.6±0.9 L/min. After 1 hour of standard CPR failed, three of 10 patients randomized to ACD CPR rapidly converted to a hemodynamically stable rhythm following 2 minutes of ACD CPR. Conclusion. —ACD CPR is a simple manual technique that improved cardiopulmonary circulation in 10 patients during cardiac arrest. Although ACD CPR may have produced a return of spontaneous circulation in three patients refractory to standard measures, its impact on survival when used early in cardiac arrest remains to be determined.

Original languageEnglish (US)
Pages (from-to)2916-2923
Number of pages8
JournalJAMA: The Journal of the American Medical Association
Issue number21
StatePublished - Jun 3 1992


Dive into the research topics of 'Active Compression-Decompression: A New Method of Cardiopulmonary Resuscitation'. Together they form a unique fingerprint.

Cite this