TY - JOUR
T1 - Activation and inactivation of Ca2+ release by NAADP+
AU - Aarhus, Robert
AU - Dickey, Deborah M.
AU - Graeff, Richard M.
AU - Gee, Kyle R.
AU - Walseth, Timothy F.
AU - Lee, Hon Cheung
PY - 1996/4/12
Y1 - 1996/4/12
N2 - Nicotinic acid adenine dinucleotide phosphate (NAADP+) is a recently identified metabolite Of NADP+ that is as potent as inositol trisphosphate (IP3) and cyclic ADP-ribose (cADPR) in mobilizing intracellular Ca2+ in sea urchin eggs and microsomes (Clapper, D. L., Walseth, T. F., Dargie, P. J., and Lee, H. C. (1987) J. Biol. Chem. 262, 9561-9568; Lee, H. C., and Aarhus, R. (1995) J. BioL Chem. 270, 2152-2157). The mechanism of Ca2+ release activated by NAADP+ and the Ca2+ stores it acts on are different from those of IP3 and cADPR. In this study we show that photolyzing caged NAADP+ in intact sea urchin eggs elicits long term Ca2+ oscillations. On the other hand, uncaging threshold amounts of NAADP+ produces desensitization. In microsomes, this self-inactivation mechanism exhibits concentration and time dependence. Binding studies show that the NAADP+ receptor is distinct from that of cADPR, and at sub threshold concentrations, NAADP+ can fully inactivate subsequent binding to the receptor in a time-dependent manner. Thus, the NAADP+-sensitive Ca2+ release process has novel regulatory characteristics, which are distinguishable from Ca2+ release mediated by either IP3 or cADPR. This battery of release mechanisms may provide the necessary versatility for cells to respond to diverse signals that lead to Ca2+ mobilization.
AB - Nicotinic acid adenine dinucleotide phosphate (NAADP+) is a recently identified metabolite Of NADP+ that is as potent as inositol trisphosphate (IP3) and cyclic ADP-ribose (cADPR) in mobilizing intracellular Ca2+ in sea urchin eggs and microsomes (Clapper, D. L., Walseth, T. F., Dargie, P. J., and Lee, H. C. (1987) J. Biol. Chem. 262, 9561-9568; Lee, H. C., and Aarhus, R. (1995) J. BioL Chem. 270, 2152-2157). The mechanism of Ca2+ release activated by NAADP+ and the Ca2+ stores it acts on are different from those of IP3 and cADPR. In this study we show that photolyzing caged NAADP+ in intact sea urchin eggs elicits long term Ca2+ oscillations. On the other hand, uncaging threshold amounts of NAADP+ produces desensitization. In microsomes, this self-inactivation mechanism exhibits concentration and time dependence. Binding studies show that the NAADP+ receptor is distinct from that of cADPR, and at sub threshold concentrations, NAADP+ can fully inactivate subsequent binding to the receptor in a time-dependent manner. Thus, the NAADP+-sensitive Ca2+ release process has novel regulatory characteristics, which are distinguishable from Ca2+ release mediated by either IP3 or cADPR. This battery of release mechanisms may provide the necessary versatility for cells to respond to diverse signals that lead to Ca2+ mobilization.
UR - http://www.scopus.com/inward/record.url?scp=0029664620&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0029664620&partnerID=8YFLogxK
U2 - 10.1074/jbc.271.15.8513
DO - 10.1074/jbc.271.15.8513
M3 - Article
C2 - 8621471
AN - SCOPUS:0029664620
SN - 0021-9258
VL - 271
SP - 8513
EP - 8516
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 15
ER -