TY - JOUR
T1 - Acoustic emission classification for failure prediction due to mechanical fatigue
AU - Emamian, Vahid
AU - Kaveh, Mostafa
AU - Tewfik, Ahmed H.
PY - 2000
Y1 - 2000
N2 - Acoustic Emission signals (AE), generated by the formation and growth of micro-cracks in metal components, have the potential for use in mechanical fault detection in monitoring complex-shaped components in machinery including helicopters and aircraft [2]. A major challenge for an AE-based fault detection algorithm is to distinguish crack-related AE signals from other interfering transient signals, such as fretting-related AE signals and electromagnetic transients. Although under a controlled laboratory environment we have fewer interference sources, there are other undesired sources which have to be considered. In this paper, we present some methods, which make their decision based on the features extracted from time-delay and joint time-frequency components by means of a Self-Organizing Map (SOM) neural network using experimental data collected in a laboratory by colleagues at the Georgia Institute of Technology.
AB - Acoustic Emission signals (AE), generated by the formation and growth of micro-cracks in metal components, have the potential for use in mechanical fault detection in monitoring complex-shaped components in machinery including helicopters and aircraft [2]. A major challenge for an AE-based fault detection algorithm is to distinguish crack-related AE signals from other interfering transient signals, such as fretting-related AE signals and electromagnetic transients. Although under a controlled laboratory environment we have fewer interference sources, there are other undesired sources which have to be considered. In this paper, we present some methods, which make their decision based on the features extracted from time-delay and joint time-frequency components by means of a Self-Organizing Map (SOM) neural network using experimental data collected in a laboratory by colleagues at the Georgia Institute of Technology.
UR - http://www.scopus.com/inward/record.url?scp=0033723770&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0033723770&partnerID=8YFLogxK
U2 - 10.1117/12.388094
DO - 10.1117/12.388094
M3 - Conference article
AN - SCOPUS:0033723770
SN - 0277-786X
VL - 3986
SP - 78
EP - 84
JO - Proceedings of SPIE - The International Society for Optical Engineering
JF - Proceedings of SPIE - The International Society for Optical Engineering
T2 - Smart Structures and Materials 2000 - Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials'
Y2 - 6 March 2000 through 8 March 2000
ER -