Abstract
Block coordinate update (BCU) methods enjoy low per-update computational complexity because every time only one or a few block variables would need to be updated among possibly a large number of blocks. They are also easily parallelized and thus have been particularly popular for solving problems involving large-scale dataset and/or variables. In this paper, we propose a primal–dual BCU method for solving linearly constrained convex program with multi-block variables. The method is an accelerated version of a primal–dual algorithm proposed by the authors, which applies randomization in selecting block variables to update and establishes an O(1 / t) convergence rate under convexity assumption. We show that the rate can be accelerated to O(1 / t2) if the objective is strongly convex. In addition, if one block variable is independent of the others in the objective, we then show that the algorithm can be modified to achieve a linear rate of convergence. The numerical experiments show that the accelerated method performs stably with a single set of parameters while the original method needs to tune the parameters for different datasets in order to achieve a comparable level of performance.
Original language | English (US) |
---|---|
Pages (from-to) | 91-128 |
Number of pages | 38 |
Journal | Computational Optimization and Applications |
Volume | 70 |
Issue number | 1 |
DOIs | |
State | Published - May 1 2018 |
Bibliographical note
Publisher Copyright:© 2017, Springer Science+Business Media, LLC, part of Springer Nature.
Keywords
- Accelerated first-order method
- Alternating direction method of multipliers (ADMM)
- Block coordinate update
- Primal–dual method