TY - JOUR
T1 - Accelerated internalization and detoxification of endotoxin by anti-lipopolysaccharide antibody is an Fc receptor-mediated process
AU - Lazaron, Victor
AU - Leslie, Daniel B.
AU - Wasiluk, Karen R.
AU - Dunn, David L.
N1 - Funding Information:
Supported by National Institutes of Health NRSA GM20219 (V.L.) and National Institutes of Health RO1 GM32414 (D.L.D.).
PY - 2001
Y1 - 2001
N2 - Background. Interaction between lipopolysaccharide (LPS), LPS-binding protein, and the CD14 receptor at the surface of LPS-responsive cells results in inflammatory cytokine release and internalization and detoxification of LPS. Monoclonal antibodies (mAbs) raised against the deep-core lipid A or the O-linked polysaccharide moieties of LPS accelerate internalization and detoxification of LPS without stimulating cytokine release. This study was conducted to test the hypothesis that the antibody-mediated internalization of LPS is an Fc receptor (FcR)-mediated process. Methods. Fluoroisothiocyanate (FITC)-conjugated Escherichia coli O111:B4 LPS was incubated with RAW 264.7 cells and allowed to internalize for 2 hours in the presence and absence of anti-LPS, anti-CD14, and isotype control mAbs, and Fab fragments from the anti-CD14, anti-Fc receptor, and control mAbs. Tumor necrosis factor-α (TNF-α) release was measured by WEHI 164 cell bioassay. FITC-LPS uptake was measured by flow cytometry. Statistical analysis was by analysis of variance and Fisher exact test. Results. Addition of anti-LPS antibodies resulted in a 30- to 40-fold acceleration of LPS internalization (P < .01) in agreement with previous studies. This increase was blunted by anti-CD14 and also by isotype control holo-antibody (P < .01), but not by Fab fragments from anti-CD14 or isotype control antibody. Both anti-FcR antibodies and Fab fragments blocked anti-LPS antibody-stimulated uptake of FITC-LPS. Both intact anti-CD14 holo-antibody and Fab fragments blocked TNF-α release (P < .01). Conclusions. Clearance and detoxification of LPS are thought to be essential to the host response to endotoxin. It has been shown that antibodies to LPS accelerate its internalization by monocytic cell lines without increasing the elaboration of cytokines. We found that specific blockade of CD14 by Fab fragments could block TNF-α release but not alter the accelerated internalization of LPS produced by anti-LPS antibodies. In contrast, a nonspecific blockade of internalization was produced by competing antibody, which suggests a mechanistic role for the FcR. Specific blockade of FcR by either holo-antibody or Fab fragments blocked accelerated internalization, which confirms a FcR mechanism. We conclude that the accelerated internalization of LPS produced by anti-LPS antibody is an Fc receptor-mediated process. These results have significance for the development of adjuvant immunotherapy for gram-negative bacterial sepsis.
AB - Background. Interaction between lipopolysaccharide (LPS), LPS-binding protein, and the CD14 receptor at the surface of LPS-responsive cells results in inflammatory cytokine release and internalization and detoxification of LPS. Monoclonal antibodies (mAbs) raised against the deep-core lipid A or the O-linked polysaccharide moieties of LPS accelerate internalization and detoxification of LPS without stimulating cytokine release. This study was conducted to test the hypothesis that the antibody-mediated internalization of LPS is an Fc receptor (FcR)-mediated process. Methods. Fluoroisothiocyanate (FITC)-conjugated Escherichia coli O111:B4 LPS was incubated with RAW 264.7 cells and allowed to internalize for 2 hours in the presence and absence of anti-LPS, anti-CD14, and isotype control mAbs, and Fab fragments from the anti-CD14, anti-Fc receptor, and control mAbs. Tumor necrosis factor-α (TNF-α) release was measured by WEHI 164 cell bioassay. FITC-LPS uptake was measured by flow cytometry. Statistical analysis was by analysis of variance and Fisher exact test. Results. Addition of anti-LPS antibodies resulted in a 30- to 40-fold acceleration of LPS internalization (P < .01) in agreement with previous studies. This increase was blunted by anti-CD14 and also by isotype control holo-antibody (P < .01), but not by Fab fragments from anti-CD14 or isotype control antibody. Both anti-FcR antibodies and Fab fragments blocked anti-LPS antibody-stimulated uptake of FITC-LPS. Both intact anti-CD14 holo-antibody and Fab fragments blocked TNF-α release (P < .01). Conclusions. Clearance and detoxification of LPS are thought to be essential to the host response to endotoxin. It has been shown that antibodies to LPS accelerate its internalization by monocytic cell lines without increasing the elaboration of cytokines. We found that specific blockade of CD14 by Fab fragments could block TNF-α release but not alter the accelerated internalization of LPS produced by anti-LPS antibodies. In contrast, a nonspecific blockade of internalization was produced by competing antibody, which suggests a mechanistic role for the FcR. Specific blockade of FcR by either holo-antibody or Fab fragments blocked accelerated internalization, which confirms a FcR mechanism. We conclude that the accelerated internalization of LPS produced by anti-LPS antibody is an Fc receptor-mediated process. These results have significance for the development of adjuvant immunotherapy for gram-negative bacterial sepsis.
UR - http://www.scopus.com/inward/record.url?scp=0034907977&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0034907977&partnerID=8YFLogxK
U2 - 10.1067/msy.2001.115825
DO - 10.1067/msy.2001.115825
M3 - Article
C2 - 11490348
AN - SCOPUS:0034907977
SN - 0039-6060
VL - 130
SP - 192
EP - 197
JO - Surgery
JF - Surgery
IS - 2
ER -