Abrupt burial imparts persistent changes to the bacterial diversity of turbidite-associated sediment profiles

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

The emplacement of subaqueous gravity-driven sediment flows imposes a significant physical and geochemical impact on underlying sediment and microbial communities. Although previous studies have established lasting mineralogical and biological signatures of turbidite deposition, the response of bacteria and archaea within and beneath debris flows remains poorly constrained. Both bacterial cells associated with the underlying sediment and those attached to allochthonous material must respond to substantially altered environmental conditions and selective pressures. As a consequence, turbidites and underlying sediments provide an exceptional opportunity to examine (i) the microbial community response to rapid sedimentation and (ii) the preservation and identification of displaced micro-organisms. We collected Illumina MiSeq sequence libraries across turbidite boundaries at ~26 cm sediment depth in La Jolla Canyon off the coast of California, and at ~50 cm depth in meromictic Twin Lake, Hennepin County, MN. 16S rRNA gene signatures of relict and active bacterial populations exhibit persistent differences attributable to turbidite deposition. In particular, both the marine and lacustrine turbidite boundaries are sharply demarcated by the abundance and diversity of Chloroflexi, suggesting a characteristic sensitivity to sediment disturbance history or to differences in organic substrates across turbidite profiles. Variations in the abundance of putative dissimilatory sulfate-reducing Deltaproteobacteria across the buried La Jolla Canyon sediment–water interface reflect turbidite-induced changes to the geochemical environment. Species-level distinctions within the Deltaproteobacteria clearly conform to the sedimentological boundary, suggesting a continuing impact of genetic inheritance distinguishable from broader trends attributable to selective pressure. Abrupt, <1-cm scale changes in bacterial diversity across the Twin Lake turbidite contact are consistent with previous studies showing that relict DNA signatures attributable to sediment transport may be more easily preserved in low-energy, anoxic environments. This work raises the possibility that deep subsurface microbial communities may inherit variations in microbial diversity from sediment flow and deformation events.

Original languageEnglish (US)
Pages (from-to)190-202
Number of pages13
JournalGeobiology
Volume16
Issue number2
DOIs
StatePublished - Mar 1 2018

Fingerprint

turbidite
sediments
sediment
delta-Proteobacteria
microbial communities
microbial community
canyons
canyon
lakes
community response
DNA libraries
lake
sediment transport
Archaea
gravity
debris flow
inheritance (genetics)
sulfates
emplacement
environmental conditions

PubMed: MeSH publication types

  • Journal Article
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

Cite this

Abrupt burial imparts persistent changes to the bacterial diversity of turbidite-associated sediment profiles. / Harrison, B. K.; Myrbo, Amy E; Flood, Beverly E; Bailey, Jake.

In: Geobiology, Vol. 16, No. 2, 01.03.2018, p. 190-202.

Research output: Contribution to journalArticle

@article{743963a7c1314d2b8f8e17e8a6b5ae3b,
title = "Abrupt burial imparts persistent changes to the bacterial diversity of turbidite-associated sediment profiles",
abstract = "The emplacement of subaqueous gravity-driven sediment flows imposes a significant physical and geochemical impact on underlying sediment and microbial communities. Although previous studies have established lasting mineralogical and biological signatures of turbidite deposition, the response of bacteria and archaea within and beneath debris flows remains poorly constrained. Both bacterial cells associated with the underlying sediment and those attached to allochthonous material must respond to substantially altered environmental conditions and selective pressures. As a consequence, turbidites and underlying sediments provide an exceptional opportunity to examine (i) the microbial community response to rapid sedimentation and (ii) the preservation and identification of displaced micro-organisms. We collected Illumina MiSeq sequence libraries across turbidite boundaries at ~26 cm sediment depth in La Jolla Canyon off the coast of California, and at ~50 cm depth in meromictic Twin Lake, Hennepin County, MN. 16S rRNA gene signatures of relict and active bacterial populations exhibit persistent differences attributable to turbidite deposition. In particular, both the marine and lacustrine turbidite boundaries are sharply demarcated by the abundance and diversity of Chloroflexi, suggesting a characteristic sensitivity to sediment disturbance history or to differences in organic substrates across turbidite profiles. Variations in the abundance of putative dissimilatory sulfate-reducing Deltaproteobacteria across the buried La Jolla Canyon sediment–water interface reflect turbidite-induced changes to the geochemical environment. Species-level distinctions within the Deltaproteobacteria clearly conform to the sedimentological boundary, suggesting a continuing impact of genetic inheritance distinguishable from broader trends attributable to selective pressure. Abrupt, <1-cm scale changes in bacterial diversity across the Twin Lake turbidite contact are consistent with previous studies showing that relict DNA signatures attributable to sediment transport may be more easily preserved in low-energy, anoxic environments. This work raises the possibility that deep subsurface microbial communities may inherit variations in microbial diversity from sediment flow and deformation events.",
author = "Harrison, {B. K.} and Myrbo, {Amy E} and Flood, {Beverly E} and Jake Bailey",
year = "2018",
month = "3",
day = "1",
doi = "10.1111/gbi.12271",
language = "English (US)",
volume = "16",
pages = "190--202",
journal = "Geobiology",
issn = "1472-4677",
publisher = "Wiley-Blackwell",
number = "2",

}

TY - JOUR

T1 - Abrupt burial imparts persistent changes to the bacterial diversity of turbidite-associated sediment profiles

AU - Harrison, B. K.

AU - Myrbo, Amy E

AU - Flood, Beverly E

AU - Bailey, Jake

PY - 2018/3/1

Y1 - 2018/3/1

N2 - The emplacement of subaqueous gravity-driven sediment flows imposes a significant physical and geochemical impact on underlying sediment and microbial communities. Although previous studies have established lasting mineralogical and biological signatures of turbidite deposition, the response of bacteria and archaea within and beneath debris flows remains poorly constrained. Both bacterial cells associated with the underlying sediment and those attached to allochthonous material must respond to substantially altered environmental conditions and selective pressures. As a consequence, turbidites and underlying sediments provide an exceptional opportunity to examine (i) the microbial community response to rapid sedimentation and (ii) the preservation and identification of displaced micro-organisms. We collected Illumina MiSeq sequence libraries across turbidite boundaries at ~26 cm sediment depth in La Jolla Canyon off the coast of California, and at ~50 cm depth in meromictic Twin Lake, Hennepin County, MN. 16S rRNA gene signatures of relict and active bacterial populations exhibit persistent differences attributable to turbidite deposition. In particular, both the marine and lacustrine turbidite boundaries are sharply demarcated by the abundance and diversity of Chloroflexi, suggesting a characteristic sensitivity to sediment disturbance history or to differences in organic substrates across turbidite profiles. Variations in the abundance of putative dissimilatory sulfate-reducing Deltaproteobacteria across the buried La Jolla Canyon sediment–water interface reflect turbidite-induced changes to the geochemical environment. Species-level distinctions within the Deltaproteobacteria clearly conform to the sedimentological boundary, suggesting a continuing impact of genetic inheritance distinguishable from broader trends attributable to selective pressure. Abrupt, <1-cm scale changes in bacterial diversity across the Twin Lake turbidite contact are consistent with previous studies showing that relict DNA signatures attributable to sediment transport may be more easily preserved in low-energy, anoxic environments. This work raises the possibility that deep subsurface microbial communities may inherit variations in microbial diversity from sediment flow and deformation events.

AB - The emplacement of subaqueous gravity-driven sediment flows imposes a significant physical and geochemical impact on underlying sediment and microbial communities. Although previous studies have established lasting mineralogical and biological signatures of turbidite deposition, the response of bacteria and archaea within and beneath debris flows remains poorly constrained. Both bacterial cells associated with the underlying sediment and those attached to allochthonous material must respond to substantially altered environmental conditions and selective pressures. As a consequence, turbidites and underlying sediments provide an exceptional opportunity to examine (i) the microbial community response to rapid sedimentation and (ii) the preservation and identification of displaced micro-organisms. We collected Illumina MiSeq sequence libraries across turbidite boundaries at ~26 cm sediment depth in La Jolla Canyon off the coast of California, and at ~50 cm depth in meromictic Twin Lake, Hennepin County, MN. 16S rRNA gene signatures of relict and active bacterial populations exhibit persistent differences attributable to turbidite deposition. In particular, both the marine and lacustrine turbidite boundaries are sharply demarcated by the abundance and diversity of Chloroflexi, suggesting a characteristic sensitivity to sediment disturbance history or to differences in organic substrates across turbidite profiles. Variations in the abundance of putative dissimilatory sulfate-reducing Deltaproteobacteria across the buried La Jolla Canyon sediment–water interface reflect turbidite-induced changes to the geochemical environment. Species-level distinctions within the Deltaproteobacteria clearly conform to the sedimentological boundary, suggesting a continuing impact of genetic inheritance distinguishable from broader trends attributable to selective pressure. Abrupt, <1-cm scale changes in bacterial diversity across the Twin Lake turbidite contact are consistent with previous studies showing that relict DNA signatures attributable to sediment transport may be more easily preserved in low-energy, anoxic environments. This work raises the possibility that deep subsurface microbial communities may inherit variations in microbial diversity from sediment flow and deformation events.

UR - http://www.scopus.com/inward/record.url?scp=85040740223&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85040740223&partnerID=8YFLogxK

U2 - 10.1111/gbi.12271

DO - 10.1111/gbi.12271

M3 - Article

VL - 16

SP - 190

EP - 202

JO - Geobiology

JF - Geobiology

SN - 1472-4677

IS - 2

ER -