TY - JOUR
T1 - Abnormal vocal behavior predicts executive and memory deficits in Alzheimer's disease
AU - Ranasinghe, Kamalini G.
AU - Gill, Jeevit S.
AU - Kothare, Hardik
AU - Beagle, Alexander J.
AU - Mizuiri, Danielle
AU - Honma, Susanne M.
AU - Gorno-Tempini, Maria Luisa
AU - Miller, Bruce L.
AU - Vossel, Keith A.
AU - Nagarajan, Srikantan S.
AU - Houde, John F.
N1 - Publisher Copyright:
© 2017 Elsevier Inc.
PY - 2017/4/1
Y1 - 2017/4/1
N2 - Speakers respond automatically and rapidly to compensate for brief perturbations of pitch in their auditory feedback. The specific adjustments in vocal output require integration of brain regions involved in speech-motor-control in order to detect the sensory-feedback error and implement the motor correction. Cortical regions involved in the pitch reflex phenomenon are highly vulnerable targets of network disruption in Alzheimer's disease (AD). We examined the pitch reflex in AD patients (n = 19) compared to an age-matched control group (n = 16). We measured the degree of behavioral compensation (peak compensation) and the extent of the adaptive response (pitch-response persistence). Healthy-controls reached a peak compensation of 18.7 ± 0.8 cents, and demonstrated a sustained compensation at 8.9 ± 0.69 cents. AD patients, in contrast, demonstrated a significantly elevated peak compensation (22.4 ± 1.2 cents, p < 0.05), and a reduced sustained response (pitch-response persistence, 4.5 ± 0.88 cents, p < 0.001). The degree of increased peak compensation predicted executive dysfunction, while the degree of impaired pitch-response persistence predicted memory dysfunction, in AD patients. The current study demonstrates pitch reflex as a sensitive behavioral index of impaired prefrontal modulation of sensorimotor integration, and compromised plasticity mechanisms of memory, in AD.
AB - Speakers respond automatically and rapidly to compensate for brief perturbations of pitch in their auditory feedback. The specific adjustments in vocal output require integration of brain regions involved in speech-motor-control in order to detect the sensory-feedback error and implement the motor correction. Cortical regions involved in the pitch reflex phenomenon are highly vulnerable targets of network disruption in Alzheimer's disease (AD). We examined the pitch reflex in AD patients (n = 19) compared to an age-matched control group (n = 16). We measured the degree of behavioral compensation (peak compensation) and the extent of the adaptive response (pitch-response persistence). Healthy-controls reached a peak compensation of 18.7 ± 0.8 cents, and demonstrated a sustained compensation at 8.9 ± 0.69 cents. AD patients, in contrast, demonstrated a significantly elevated peak compensation (22.4 ± 1.2 cents, p < 0.05), and a reduced sustained response (pitch-response persistence, 4.5 ± 0.88 cents, p < 0.001). The degree of increased peak compensation predicted executive dysfunction, while the degree of impaired pitch-response persistence predicted memory dysfunction, in AD patients. The current study demonstrates pitch reflex as a sensitive behavioral index of impaired prefrontal modulation of sensorimotor integration, and compromised plasticity mechanisms of memory, in AD.
KW - Alzheimer's disease
KW - Executive dysfunction
KW - Network disruption
KW - Pitch perturbation
KW - Prefrontal modulation
KW - Sensorimotor integration
UR - http://www.scopus.com/inward/record.url?scp=85010366745&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85010366745&partnerID=8YFLogxK
U2 - 10.1016/j.neurobiolaging.2016.12.020
DO - 10.1016/j.neurobiolaging.2016.12.020
M3 - Article
C2 - 28131013
AN - SCOPUS:85010366745
SN - 0197-4580
VL - 52
SP - 71
EP - 80
JO - Neurobiology of Aging
JF - Neurobiology of Aging
ER -