Abiologic silicon isotope fractionation between aqueous Si and Fe(III)-Si gel in simulated Archean seawater: Implications for Si isotope records in Precambrian sedimentary rocks

Xin Yuan Zheng, Brian L. Beard, Thiruchelvi R. Reddy, Eric E. Roden, Clark M. Johnson

Research output: Contribution to journalArticle

18 Citations (Scopus)

Abstract

Precambrian Si-rich sedimentary rocks, including cherts and banded iron formations (BIFs), record a >7‰ spread in 30Si/28Si ratios (δ30Si values), yet interpretation of this large variability has been hindered by the paucity of data on Si isotope exchange kinetics and equilibrium fractionation factors in systems that are pertinent to Precambrian marine conditions. Using the three-isotope method and an enriched 29Si tracer, a series of experiments were conducted to constrain Si isotope exchange kinetics and fractionation factors between amorphous Fe(III)-Si gel, a likely precursor to Precambrian jaspers and BIFs, and aqueous Si in artificial Archean seawater under anoxic conditions. Experiments were conducted at room temperature, and in the presence and absence of aqueous Fe(II) (Fe(II)aq).Results of this study demonstrate that Si solubility is significantly lower for Fe-Si gel than that of amorphous Si, indicating that seawater Si concentrations in the Precambrian may have been lower than previous estimates. The experiments reached ~70-90% Si isotope exchange after a period of 53-126 days, and the highest extents of exchange were obtained where Fe(II)aq was present, suggesting that Fe(II)-Fe(III) electron-transfer and atom-exchange reactions catalyze Si isotope exchange through breakage of Fe-Si bonds. All experiments except one showed little change in the instantaneous solid-aqueous Si isotope fractionation factor with time, allowing extraction of equilibrium Si isotope fractionation factors through extrapolation to 100% isotope exchange. The equilibrium 30Si/28Si fractionation between Fe(III)-Si gel and aqueous Si (δ30Sigel-aqueous) is -2.30 ± 0.25‰ (2σ) in the absence of Fe(II)aq. In the case where Fe(II)aq was present, which resulted in addition of ~10% Fe(II) in the final solid, creating a mixed Fe(II)-Fe(III) Si gel, the equilibrium fractionation between Fe(II)-Fe(III)-Si gel and aqueous Si (δ30Sigel-aqueous) is -3.23 ± 0.37‰ (2σ). Equilibrium Si isotope fractionation for Fe-Si gel systems is significantly larger in magnitude than estimates of a near-zero solid-aqueous fractionation factor between pure Si gel and aqueous Si, indicating a major influence of Fe atoms on Si-O bonds, and hence the isotopic properties, of Fe-Si gel. Larger Si isotope fractionation in the Fe(II)-bearing systems may be caused by incorporation of Fe(II) into the solid structure, which may further weaken Fe-Si bonds and thus change the Si isotope fractionation factor. The relatively large Si isotope fractionation for Fe-Si gel, relative to pure Si gel, provides a new explanation for the observed contrast in δ30Si values in the Precambrian BIFs and cherts, as well as an explanation for the relatively negative δ30Si values in BIFs, in contrast to previous proposals that the more negative δ30Si values in BIFs reflect hydrothermal sources of Si or sorption to Fe oxides/hydroxides.

Original languageEnglish (US)
Pages (from-to)102-122
Number of pages21
JournalGeochimica et Cosmochimica Acta
Volume187
DOIs
StatePublished - Aug 15 2016
Externally publishedYes

Fingerprint

Sedimentary rocks
Silicon
Fractionation
Seawater
Isotopes
silicon
sedimentary rock
Archean
Precambrian
gel
fractionation
Gels
isotope
seawater
banded iron formation
Ion exchange
Iron
Bearings (structural)
experiment
Hydroxides

Keywords

  • BIFs
  • Chert
  • Fe-Si system
  • Fractionation factor
  • Precambrian
  • Si isotopes

Cite this

Abiologic silicon isotope fractionation between aqueous Si and Fe(III)-Si gel in simulated Archean seawater : Implications for Si isotope records in Precambrian sedimentary rocks. / Zheng, Xin Yuan; Beard, Brian L.; Reddy, Thiruchelvi R.; Roden, Eric E.; Johnson, Clark M.

In: Geochimica et Cosmochimica Acta, Vol. 187, 15.08.2016, p. 102-122.

Research output: Contribution to journalArticle

@article{52675eb8645a4818aa5dcc8ff4a16631,
title = "Abiologic silicon isotope fractionation between aqueous Si and Fe(III)-Si gel in simulated Archean seawater: Implications for Si isotope records in Precambrian sedimentary rocks",
abstract = "Precambrian Si-rich sedimentary rocks, including cherts and banded iron formations (BIFs), record a >7‰ spread in 30Si/28Si ratios (δ30Si values), yet interpretation of this large variability has been hindered by the paucity of data on Si isotope exchange kinetics and equilibrium fractionation factors in systems that are pertinent to Precambrian marine conditions. Using the three-isotope method and an enriched 29Si tracer, a series of experiments were conducted to constrain Si isotope exchange kinetics and fractionation factors between amorphous Fe(III)-Si gel, a likely precursor to Precambrian jaspers and BIFs, and aqueous Si in artificial Archean seawater under anoxic conditions. Experiments were conducted at room temperature, and in the presence and absence of aqueous Fe(II) (Fe(II)aq).Results of this study demonstrate that Si solubility is significantly lower for Fe-Si gel than that of amorphous Si, indicating that seawater Si concentrations in the Precambrian may have been lower than previous estimates. The experiments reached ~70-90{\%} Si isotope exchange after a period of 53-126 days, and the highest extents of exchange were obtained where Fe(II)aq was present, suggesting that Fe(II)-Fe(III) electron-transfer and atom-exchange reactions catalyze Si isotope exchange through breakage of Fe-Si bonds. All experiments except one showed little change in the instantaneous solid-aqueous Si isotope fractionation factor with time, allowing extraction of equilibrium Si isotope fractionation factors through extrapolation to 100{\%} isotope exchange. The equilibrium 30Si/28Si fractionation between Fe(III)-Si gel and aqueous Si (δ30Sigel-aqueous) is -2.30 ± 0.25‰ (2σ) in the absence of Fe(II)aq. In the case where Fe(II)aq was present, which resulted in addition of ~10{\%} Fe(II) in the final solid, creating a mixed Fe(II)-Fe(III) Si gel, the equilibrium fractionation between Fe(II)-Fe(III)-Si gel and aqueous Si (δ30Sigel-aqueous) is -3.23 ± 0.37‰ (2σ). Equilibrium Si isotope fractionation for Fe-Si gel systems is significantly larger in magnitude than estimates of a near-zero solid-aqueous fractionation factor between pure Si gel and aqueous Si, indicating a major influence of Fe atoms on Si-O bonds, and hence the isotopic properties, of Fe-Si gel. Larger Si isotope fractionation in the Fe(II)-bearing systems may be caused by incorporation of Fe(II) into the solid structure, which may further weaken Fe-Si bonds and thus change the Si isotope fractionation factor. The relatively large Si isotope fractionation for Fe-Si gel, relative to pure Si gel, provides a new explanation for the observed contrast in δ30Si values in the Precambrian BIFs and cherts, as well as an explanation for the relatively negative δ30Si values in BIFs, in contrast to previous proposals that the more negative δ30Si values in BIFs reflect hydrothermal sources of Si or sorption to Fe oxides/hydroxides.",
keywords = "BIFs, Chert, Fe-Si system, Fractionation factor, Precambrian, Si isotopes",
author = "Zheng, {Xin Yuan} and Beard, {Brian L.} and Reddy, {Thiruchelvi R.} and Roden, {Eric E.} and Johnson, {Clark M.}",
year = "2016",
month = "8",
day = "15",
doi = "10.1016/j.gca.2016.05.012",
language = "English (US)",
volume = "187",
pages = "102--122",
journal = "Geochmica et Cosmochimica Acta",
issn = "0016-7037",
publisher = "Elsevier Limited",

}

TY - JOUR

T1 - Abiologic silicon isotope fractionation between aqueous Si and Fe(III)-Si gel in simulated Archean seawater

T2 - Implications for Si isotope records in Precambrian sedimentary rocks

AU - Zheng, Xin Yuan

AU - Beard, Brian L.

AU - Reddy, Thiruchelvi R.

AU - Roden, Eric E.

AU - Johnson, Clark M.

PY - 2016/8/15

Y1 - 2016/8/15

N2 - Precambrian Si-rich sedimentary rocks, including cherts and banded iron formations (BIFs), record a >7‰ spread in 30Si/28Si ratios (δ30Si values), yet interpretation of this large variability has been hindered by the paucity of data on Si isotope exchange kinetics and equilibrium fractionation factors in systems that are pertinent to Precambrian marine conditions. Using the three-isotope method and an enriched 29Si tracer, a series of experiments were conducted to constrain Si isotope exchange kinetics and fractionation factors between amorphous Fe(III)-Si gel, a likely precursor to Precambrian jaspers and BIFs, and aqueous Si in artificial Archean seawater under anoxic conditions. Experiments were conducted at room temperature, and in the presence and absence of aqueous Fe(II) (Fe(II)aq).Results of this study demonstrate that Si solubility is significantly lower for Fe-Si gel than that of amorphous Si, indicating that seawater Si concentrations in the Precambrian may have been lower than previous estimates. The experiments reached ~70-90% Si isotope exchange after a period of 53-126 days, and the highest extents of exchange were obtained where Fe(II)aq was present, suggesting that Fe(II)-Fe(III) electron-transfer and atom-exchange reactions catalyze Si isotope exchange through breakage of Fe-Si bonds. All experiments except one showed little change in the instantaneous solid-aqueous Si isotope fractionation factor with time, allowing extraction of equilibrium Si isotope fractionation factors through extrapolation to 100% isotope exchange. The equilibrium 30Si/28Si fractionation between Fe(III)-Si gel and aqueous Si (δ30Sigel-aqueous) is -2.30 ± 0.25‰ (2σ) in the absence of Fe(II)aq. In the case where Fe(II)aq was present, which resulted in addition of ~10% Fe(II) in the final solid, creating a mixed Fe(II)-Fe(III) Si gel, the equilibrium fractionation between Fe(II)-Fe(III)-Si gel and aqueous Si (δ30Sigel-aqueous) is -3.23 ± 0.37‰ (2σ). Equilibrium Si isotope fractionation for Fe-Si gel systems is significantly larger in magnitude than estimates of a near-zero solid-aqueous fractionation factor between pure Si gel and aqueous Si, indicating a major influence of Fe atoms on Si-O bonds, and hence the isotopic properties, of Fe-Si gel. Larger Si isotope fractionation in the Fe(II)-bearing systems may be caused by incorporation of Fe(II) into the solid structure, which may further weaken Fe-Si bonds and thus change the Si isotope fractionation factor. The relatively large Si isotope fractionation for Fe-Si gel, relative to pure Si gel, provides a new explanation for the observed contrast in δ30Si values in the Precambrian BIFs and cherts, as well as an explanation for the relatively negative δ30Si values in BIFs, in contrast to previous proposals that the more negative δ30Si values in BIFs reflect hydrothermal sources of Si or sorption to Fe oxides/hydroxides.

AB - Precambrian Si-rich sedimentary rocks, including cherts and banded iron formations (BIFs), record a >7‰ spread in 30Si/28Si ratios (δ30Si values), yet interpretation of this large variability has been hindered by the paucity of data on Si isotope exchange kinetics and equilibrium fractionation factors in systems that are pertinent to Precambrian marine conditions. Using the three-isotope method and an enriched 29Si tracer, a series of experiments were conducted to constrain Si isotope exchange kinetics and fractionation factors between amorphous Fe(III)-Si gel, a likely precursor to Precambrian jaspers and BIFs, and aqueous Si in artificial Archean seawater under anoxic conditions. Experiments were conducted at room temperature, and in the presence and absence of aqueous Fe(II) (Fe(II)aq).Results of this study demonstrate that Si solubility is significantly lower for Fe-Si gel than that of amorphous Si, indicating that seawater Si concentrations in the Precambrian may have been lower than previous estimates. The experiments reached ~70-90% Si isotope exchange after a period of 53-126 days, and the highest extents of exchange were obtained where Fe(II)aq was present, suggesting that Fe(II)-Fe(III) electron-transfer and atom-exchange reactions catalyze Si isotope exchange through breakage of Fe-Si bonds. All experiments except one showed little change in the instantaneous solid-aqueous Si isotope fractionation factor with time, allowing extraction of equilibrium Si isotope fractionation factors through extrapolation to 100% isotope exchange. The equilibrium 30Si/28Si fractionation between Fe(III)-Si gel and aqueous Si (δ30Sigel-aqueous) is -2.30 ± 0.25‰ (2σ) in the absence of Fe(II)aq. In the case where Fe(II)aq was present, which resulted in addition of ~10% Fe(II) in the final solid, creating a mixed Fe(II)-Fe(III) Si gel, the equilibrium fractionation between Fe(II)-Fe(III)-Si gel and aqueous Si (δ30Sigel-aqueous) is -3.23 ± 0.37‰ (2σ). Equilibrium Si isotope fractionation for Fe-Si gel systems is significantly larger in magnitude than estimates of a near-zero solid-aqueous fractionation factor between pure Si gel and aqueous Si, indicating a major influence of Fe atoms on Si-O bonds, and hence the isotopic properties, of Fe-Si gel. Larger Si isotope fractionation in the Fe(II)-bearing systems may be caused by incorporation of Fe(II) into the solid structure, which may further weaken Fe-Si bonds and thus change the Si isotope fractionation factor. The relatively large Si isotope fractionation for Fe-Si gel, relative to pure Si gel, provides a new explanation for the observed contrast in δ30Si values in the Precambrian BIFs and cherts, as well as an explanation for the relatively negative δ30Si values in BIFs, in contrast to previous proposals that the more negative δ30Si values in BIFs reflect hydrothermal sources of Si or sorption to Fe oxides/hydroxides.

KW - BIFs

KW - Chert

KW - Fe-Si system

KW - Fractionation factor

KW - Precambrian

KW - Si isotopes

UR - http://www.scopus.com/inward/record.url?scp=84971299241&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84971299241&partnerID=8YFLogxK

U2 - 10.1016/j.gca.2016.05.012

DO - 10.1016/j.gca.2016.05.012

M3 - Article

AN - SCOPUS:84971299241

VL - 187

SP - 102

EP - 122

JO - Geochmica et Cosmochimica Acta

JF - Geochmica et Cosmochimica Acta

SN - 0016-7037

ER -