Abstract
Potential energy surfaces for the alkaline hydrolysis of sarin and O,S-dimethyl methylphosphonothiolate, a VX model compound, and the perhydrolysis of the latter have been computed at the MP2/6-31+G(d)//mPW1K/MIDI! level of theory. The effect of aqueous solvation was accounted for via the integral equation formalism polarizable continuum model (IEF-PCM) at the HF/6-31+G(d) level. Excellent agreement with the experimental enthalpy of activation for alkaline hydrolysis of sarin was found. For the alkaline hydrolysis of O,S-dimethyl methylphosphonothiolate, it was found that the P-O and P-S bond cleavage processes are kinetically competitive but that the products of P-S bond cleavage are thermodynamically favored. For the perhydrolysis of O,S-dimethyl methylphosphonothiolate, it was found that P-O bond cleavage is not kinetically competitive with P-S bond cleavage. In both cases, the data support initial formation of trigonal bipyramidal intermediates and demonstrate kinetic selectivity for nucleophilic attack on the face opposite the more apicophilic methoxide ligand.
Original language | English (US) |
---|---|
Pages (from-to) | 8649-8660 |
Number of pages | 12 |
Journal | Journal of Organic Chemistry |
Volume | 70 |
Issue number | 22 |
DOIs | |
State | Published - Oct 28 2005 |
Externally published | Yes |