Abstract
The catalytic activity of many protein kinases is controlled by conformational changes of a conserved Asp-Phe-Gly (DFG) motif. We used an infrared probe to track the DFG motif of the mitotic kinase Aurora A (AurA) and found that allosteric activation by the spindle-associated protein Tpx2 involves an equilibrium shift toward the active DFG-in state. Förster resonance energy transfer experiments show that the activation loop undergoes a nanometer-scale movement that is tightly coupled to the DFG equilibrium. Tpx2 further activates AurA by stabilizing a water-mediated allosteric network that links the C-helix to the active site through an unusual polar residue in the regulatory spine. The polar spine residue and water network of AurA are essential for phosphorylation-driven activation, but an alternative form of the water network found in related kinases can support Tpx2-driven activation, suggesting that variations in the water-mediated hydrogen bond network mediate regulatory diversification in protein kinases.
Original language | English (US) |
---|---|
Pages (from-to) | 402-408 |
Number of pages | 7 |
Journal | Nature Chemical Biology |
Volume | 13 |
Issue number | 4 |
DOIs | |
State | Published - Apr 1 2017 |
Bibliographical note
Publisher Copyright:© 2017 Nature America, Inc., part of Springer Nature. All rights reserved.