A theoretical approach to actin filament dynamics

Jifeng Hu, Anastasios Matzavinos, Hans G. Othmer

Research output: Contribution to journalArticlepeer-review

28 Scopus citations


Dynamic control of the actin network in eukaryotic cells plays an essential role in their movement, but to date our understanding of how the network properties are controlled in space and time is still rudimentary. For example, how the cell maintains the pools of monomeric actin needed for a rapid response to signals, how the filament length distribution is controlled, and how the actin network properties are modulated by various bundling and severing proteins to produce the mechanical response is not known. Here we address the simplest aspect of this, which is to understand the temporal evolution of the length distribution in vitro in order to understand what the relevant time scales are for establishment of a time-invariant distribution. Surprisingly, we find that there are very long-lived intermediate length distributions that are not exponential. The results shed light on the time scale needed to observe genuine steady-state distributions, and emphasize the necessity of control molecules for modulating the time scale.

Original languageEnglish (US)
Pages (from-to)111-138
Number of pages28
JournalJournal of Statistical Physics
Issue number1-2
StatePublished - Jul 2007

Bibliographical note

Funding Information:
1School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA. Research supported in part by NSF grants DMS 9805494 and DMS 0317372. 2Also in the Digital Technology Center, University of Minnesota. Research supported in part by NIH grant GM 29123, the Max Planck Institute for Mathematics in the Sciences and the Alexander von Humboldt Foundation; e-mail: othmer@math.umn.edu.


  • Actin filaments
  • Cell motility
  • Mathematical modeling


Dive into the research topics of 'A theoretical approach to actin filament dynamics'. Together they form a unique fingerprint.

Cite this