A subset of plasma membrane-localized PP2C.D phosphatases negatively regulate SAUR-mediated cell expansion in Arabidopsis

Hong Ren, Meeyeon Park, Angela K Spartz, Jeh Haur Wong, William M Gray

Research output: Contribution to journalArticle

7 Citations (Scopus)

Abstract

The plant hormone auxin regulates numerous growth and developmental processes throughout the plant life cycle. One major function of auxin in plant growth and development is the regulation of cell expansion. Our previous studies have shown that SMALL AUXIN UP RNA (SAUR) proteins promote auxin-induced cell expansion via an acid growth mechanism. These proteins inhibit the PP2C.D family phosphatases to activate plasma membrane (PM) H+-ATPases and thereby promote cell expansion. However, the functions of individual PP2C.D phosphatases are poorly understood. Here, we investigated PP2C.D-mediated control of cell expansion and other aspects of plant growth and development. The nine PP2C.D family members exhibit distinct subcellular localization patterns. Our genetic findings demonstrate that the three plasma membrane-localized members, PP2C.D2, PP2C.D5, and PP2C.D6, are the major regulators of cell expansion. These phosphatases physically interact with SAUR19 and PM H+-ATPases, and inhibit cell expansion by dephosphorylating the penultimate threonine of PM H+-ATPases. PP2C.D genes are broadly expressed and are crucial for diverse plant growth and developmental processes, including apical hook development, phototropism, and organ growth. GFP-SAUR19 overexpression suppresses the growth defects conferred by PP2C.D5 overexpression, indicating that SAUR proteins antagonize the growth inhibition conferred by the plasma membrane-localized PP2C.D phosphatases. Auxin and high temperature upregulate the expression of some PP2C.D family members, which may provide an additional layer of regulation to prevent plant overgrowth. Our findings provide novel insights into auxin-induced cell expansion, and provide crucial loss-of-function genetic support for SAUR-PP2C.D regulatory modules controlling key aspects of plant growth.

Original languageEnglish (US)
Article numbere1007455
JournalPLoS genetics
Volume14
Issue number6
DOIs
StatePublished - Jun 1 2018

Fingerprint

Phosphoric Monoester Hydrolases
Arabidopsis
phosphatase
RNA
Indoleacetic Acids
plasma membrane
Cell Membrane
membrane
plasma
auxins
H-transporting ATP synthase
Growth
Proton-Translocating ATPases
plant growth
cells
Plant Development
Growth and Development
growth and development
protein
plant development

PubMed: MeSH publication types

  • Journal Article
  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

Cite this

A subset of plasma membrane-localized PP2C.D phosphatases negatively regulate SAUR-mediated cell expansion in Arabidopsis. / Ren, Hong; Park, Meeyeon; Spartz, Angela K; Wong, Jeh Haur; Gray, William M.

In: PLoS genetics, Vol. 14, No. 6, e1007455, 01.06.2018.

Research output: Contribution to journalArticle

@article{738647458d954cbf849aadca6ff58301,
title = "A subset of plasma membrane-localized PP2C.D phosphatases negatively regulate SAUR-mediated cell expansion in Arabidopsis",
abstract = "The plant hormone auxin regulates numerous growth and developmental processes throughout the plant life cycle. One major function of auxin in plant growth and development is the regulation of cell expansion. Our previous studies have shown that SMALL AUXIN UP RNA (SAUR) proteins promote auxin-induced cell expansion via an acid growth mechanism. These proteins inhibit the PP2C.D family phosphatases to activate plasma membrane (PM) H+-ATPases and thereby promote cell expansion. However, the functions of individual PP2C.D phosphatases are poorly understood. Here, we investigated PP2C.D-mediated control of cell expansion and other aspects of plant growth and development. The nine PP2C.D family members exhibit distinct subcellular localization patterns. Our genetic findings demonstrate that the three plasma membrane-localized members, PP2C.D2, PP2C.D5, and PP2C.D6, are the major regulators of cell expansion. These phosphatases physically interact with SAUR19 and PM H+-ATPases, and inhibit cell expansion by dephosphorylating the penultimate threonine of PM H+-ATPases. PP2C.D genes are broadly expressed and are crucial for diverse plant growth and developmental processes, including apical hook development, phototropism, and organ growth. GFP-SAUR19 overexpression suppresses the growth defects conferred by PP2C.D5 overexpression, indicating that SAUR proteins antagonize the growth inhibition conferred by the plasma membrane-localized PP2C.D phosphatases. Auxin and high temperature upregulate the expression of some PP2C.D family members, which may provide an additional layer of regulation to prevent plant overgrowth. Our findings provide novel insights into auxin-induced cell expansion, and provide crucial loss-of-function genetic support for SAUR-PP2C.D regulatory modules controlling key aspects of plant growth.",
author = "Hong Ren and Meeyeon Park and Spartz, {Angela K} and Wong, {Jeh Haur} and Gray, {William M}",
year = "2018",
month = "6",
day = "1",
doi = "10.1371/journal.pgen.1007455",
language = "English (US)",
volume = "14",
journal = "PLoS Genetics",
issn = "1553-7390",
publisher = "Public Library of Science",
number = "6",

}

TY - JOUR

T1 - A subset of plasma membrane-localized PP2C.D phosphatases negatively regulate SAUR-mediated cell expansion in Arabidopsis

AU - Ren, Hong

AU - Park, Meeyeon

AU - Spartz, Angela K

AU - Wong, Jeh Haur

AU - Gray, William M

PY - 2018/6/1

Y1 - 2018/6/1

N2 - The plant hormone auxin regulates numerous growth and developmental processes throughout the plant life cycle. One major function of auxin in plant growth and development is the regulation of cell expansion. Our previous studies have shown that SMALL AUXIN UP RNA (SAUR) proteins promote auxin-induced cell expansion via an acid growth mechanism. These proteins inhibit the PP2C.D family phosphatases to activate plasma membrane (PM) H+-ATPases and thereby promote cell expansion. However, the functions of individual PP2C.D phosphatases are poorly understood. Here, we investigated PP2C.D-mediated control of cell expansion and other aspects of plant growth and development. The nine PP2C.D family members exhibit distinct subcellular localization patterns. Our genetic findings demonstrate that the three plasma membrane-localized members, PP2C.D2, PP2C.D5, and PP2C.D6, are the major regulators of cell expansion. These phosphatases physically interact with SAUR19 and PM H+-ATPases, and inhibit cell expansion by dephosphorylating the penultimate threonine of PM H+-ATPases. PP2C.D genes are broadly expressed and are crucial for diverse plant growth and developmental processes, including apical hook development, phototropism, and organ growth. GFP-SAUR19 overexpression suppresses the growth defects conferred by PP2C.D5 overexpression, indicating that SAUR proteins antagonize the growth inhibition conferred by the plasma membrane-localized PP2C.D phosphatases. Auxin and high temperature upregulate the expression of some PP2C.D family members, which may provide an additional layer of regulation to prevent plant overgrowth. Our findings provide novel insights into auxin-induced cell expansion, and provide crucial loss-of-function genetic support for SAUR-PP2C.D regulatory modules controlling key aspects of plant growth.

AB - The plant hormone auxin regulates numerous growth and developmental processes throughout the plant life cycle. One major function of auxin in plant growth and development is the regulation of cell expansion. Our previous studies have shown that SMALL AUXIN UP RNA (SAUR) proteins promote auxin-induced cell expansion via an acid growth mechanism. These proteins inhibit the PP2C.D family phosphatases to activate plasma membrane (PM) H+-ATPases and thereby promote cell expansion. However, the functions of individual PP2C.D phosphatases are poorly understood. Here, we investigated PP2C.D-mediated control of cell expansion and other aspects of plant growth and development. The nine PP2C.D family members exhibit distinct subcellular localization patterns. Our genetic findings demonstrate that the three plasma membrane-localized members, PP2C.D2, PP2C.D5, and PP2C.D6, are the major regulators of cell expansion. These phosphatases physically interact with SAUR19 and PM H+-ATPases, and inhibit cell expansion by dephosphorylating the penultimate threonine of PM H+-ATPases. PP2C.D genes are broadly expressed and are crucial for diverse plant growth and developmental processes, including apical hook development, phototropism, and organ growth. GFP-SAUR19 overexpression suppresses the growth defects conferred by PP2C.D5 overexpression, indicating that SAUR proteins antagonize the growth inhibition conferred by the plasma membrane-localized PP2C.D phosphatases. Auxin and high temperature upregulate the expression of some PP2C.D family members, which may provide an additional layer of regulation to prevent plant overgrowth. Our findings provide novel insights into auxin-induced cell expansion, and provide crucial loss-of-function genetic support for SAUR-PP2C.D regulatory modules controlling key aspects of plant growth.

UR - http://www.scopus.com/inward/record.url?scp=85049436785&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85049436785&partnerID=8YFLogxK

U2 - 10.1371/journal.pgen.1007455

DO - 10.1371/journal.pgen.1007455

M3 - Article

C2 - 29897949

AN - SCOPUS:85049436785

VL - 14

JO - PLoS Genetics

JF - PLoS Genetics

SN - 1553-7390

IS - 6

M1 - e1007455

ER -