A structural, kinetic model of soft tissue thermomechanics

Triantafyllos Stylianopoulos, Alptekin Aksan, Victor H. Barocas

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

A structure-based kinetic model was developed to predict the thermomechanical response of collagenous soft tissues. The collagen fibril was represented as an ensemble of molecular arrays with cross-links connecting the collagen molecules within the same array. A two-state kinetic model for protein folding was employed to represent the native and the denatured states of the collagen molecule. The Monte Carlo method was used to determine the state of the collagen molecule when subjected to thermal and mechanical loads. The model predictions were compared to existing experimental data for New Zealand white rabbit patellar tendons. The model predictions for one-dimensional tissue shrinkage and the corresponding mechanical property degradation agreed well with the experimental data, showing that the gross tissue behavior is dictated by molecular-level phenomena.

Original languageEnglish (US)
Pages (from-to)717-725
Number of pages9
JournalBiophysical journal
Volume94
Issue number3
DOIs
StatePublished - Jan 2 2008

Bibliographical note

Funding Information:
This work was supported by the National Institutes of Health (R01 EB005813-01). T.S. was also supported by a Doctoral Dissertation Fellowship from the University of Minnesota. Simulations were made possible by a Resource Grant from the University of Minnesota Supercomputer Institute and TeraGrid.

Fingerprint

Dive into the research topics of 'A structural, kinetic model of soft tissue thermomechanics'. Together they form a unique fingerprint.

Cite this