A role for fructose 1,6-diphosphate in the ATPase-mediated energy-spilling reaction of Streptococcus bovis

Daniel R. Bond, James B. Russell

Research output: Contribution to journalArticlepeer-review

26 Scopus citations

Abstract

The amount of ATP produced by Streptococcus bovis was larger than the amount that could be attributed to growth and maintenance, and even glucose- limited continuous cultures used ATP inefficiently (spilled ATP). Rapid- dilution-rate cultures always spilled more ATP than those growing at slow dilution rates, but rates of ATP spilling could also be enhanced by amino acid deprivation (with only ammonia as a nitrogen source). Energy spilling and intracellular ATP were not correlated, but energy spilling was always greatest when the rate of lactate production was high. The relationship between lactate production and energy spilling was supported by the observation that amino acid deprivation increased lactate production and ATP spilling. The lactate production rate of nongrowing (energy-spilling) S. bovis cells was fructose 1,6-diphosphate (FDP) dependent, and previous work showed that the lactate dehydrogenase of S. bovis was activated by FDP (M. J. Wolin, Science 146:775-777, 1964). The role of FDP in energy spilling was supported by the observation that the membrane-bound ATPase of S. bovis could be stimulated by FDP. FDP decreased the K(m) for ATP by as much as fivefold. Other glycolytic intermediates could not stimulate the ATPase of washed membrane preparations, and FDP had no effect on soluble ATPase activity.

Original languageEnglish (US)
Pages (from-to)2095-2099
Number of pages5
JournalApplied and environmental microbiology
Volume62
Issue number6
DOIs
StatePublished - 1996

Fingerprint

Dive into the research topics of 'A role for fructose 1,6-diphosphate in the ATPase-mediated energy-spilling reaction of Streptococcus bovis'. Together they form a unique fingerprint.

Cite this