A reference based analysis framework for understanding anomaly detection techniques for symbolic sequences

Varun Chandola, Varun Mithal, Vipin Kumar

Research output: Contribution to journalArticlepeer-review

4 Scopus citations


Anomaly detection for symbolic sequence data is a highly important area of research and is relevant in many application domains. While several techniques have been proposed within different domains, understanding of their relative strengths and weaknesses is limited. The key factor for this is that the nature of sequence data varies significantly across domains, and hence while a technique might perform well in its original domain, its performance is not guaranteed in a different domain. In this paper, we aim at establishing this understanding for a wide variety of anomaly detection techniques for symbolic sequences. We present a comparative evaluation of a large number of anomaly detection techniques on a variety of publicly available as well as artificially generated data sets. Many of these are existing techniques while some are slight variants and/or adaptations of traditional anomaly detection techniques to sequence data. The analysis presented in this paper allows relative comparison of the different anomaly detection techniques and highlights their strengths and weaknesses. We extend the reference based analysis (RBA) framework, which was originally proposed to analyze multivariate categorical data, to analyze symbolic sequence data sets. We visualize the symbolic sequences using the characteristics provided by the RBA framework and use the visualization to understand various aspects of the sequence data. We then use the characterization done by RBA to understand the performance of the different techniques. Using the RBA framework, we propose two anomaly detection techniques for symbolic sequences, which show consistently superior performance over the existing techniques across the different data sets.

Original languageEnglish (US)
Pages (from-to)702-735
Number of pages34
JournalData Mining and Knowledge Discovery
Issue number3
StatePublished - May 2014

Bibliographical note

Funding Information:
Acknowledgments This work was supported by NASA under award NNX08AC36A, NSF Grant CNS-0551551 and NSF Grant IIS-0713227. Access to computing facilities was provided by the Digital Technology Consortium.


  • Anomaly detection
  • Data mining
  • Reference based analysis
  • Sequences


Dive into the research topics of 'A reference based analysis framework for understanding anomaly detection techniques for symbolic sequences'. Together they form a unique fingerprint.

Cite this