Abstract
The era of data deluge has sparked the interest in graph-based learning methods in a number of disciplines such as sociology, biology, neuroscience, or engineering. In this paper, we introduce a graph recurrent neural network (GRNN) for scalable semi-supervised learning from multi-relational data. Key aspects of the novel GRNN architecture are the use of multi-relational graphs, the dynamic adaptation to the different relations via learnable weights, and the consideration of graph-based regularizers to promote smoothness and alleviate over-parametrization. Our ultimate goal is to design a powerful learning architecture able to: discover complex and highly non-linear data associations, combine (and select) multiple types of relations, and scale gracefully with respect to the size of the graph. Numerical tests with real datasets corroborate the design goals and illustrate the performance gains relative to competing alternatives.
Original language | English (US) |
---|---|
Title of host publication | 2019 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019 - Proceedings |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 8157-8161 |
Number of pages | 5 |
ISBN (Electronic) | 9781479981311 |
DOIs | |
State | Published - May 2019 |
Event | 44th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019 - Brighton, United Kingdom Duration: May 12 2019 → May 17 2019 |
Publication series
Name | ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings |
---|---|
Volume | 2019-May |
ISSN (Print) | 1520-6149 |
Conference
Conference | 44th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019 |
---|---|
Country/Territory | United Kingdom |
City | Brighton |
Period | 5/12/19 → 5/17/19 |
Bibliographical note
Funding Information:The work in this paper has been supported by USA NSF grants 171141, 1500713, and 1442686, and by the Spanish grants MINECO KLINILYCS (TEC2016-75361-R) and Instituto de Salud Carlos III DTS17/00158. 1Many works in the literature refer to these graphs as multi-layer graphs.
Publisher Copyright:
© 2019 IEEE.
Keywords
- Deep neural networks
- graph recurrent neural networks
- graph signals
- multi-relational graphs