TY - JOUR
T1 - A recurrence relation approach to higher order quantum superintegrability
AU - Kalnins, Ernie G.
AU - Kress, Jonathan M.
AU - Miller, Willard
PY - 2011
Y1 - 2011
N2 - We develop our method to prove quantum superintegrability of an integrable 2D system, based on recurrence relations obeyed by the eigenfunctions of the system with respect to separable coordinates. We show that the method provides rigorous proofs of superintegrability and explicit constructions of higher order generators for the symmetry algebra. We apply the method to 5 families of systems, each depending on a parameter k, including most notably the caged anisotropic oscillator, the Tremblay, Turbiner and Winternitz system and a deformed Kepler-Coulomb system, and we give proofs of quantum superintegrability for all rational values of k, new for 4 of these systems. In addition, we show that the explicit information supplied by the special function recurrence relations allows us to prove, for the first time in 4 cases, that the symmetry algebra generated by our lowest order symmetries closes and to determine the associated structure equations of the algebras for each k. We have no proof that our generating symmetries are of lowest possible order, but we have no counterexamples, and we are confident we can can always find any missing generators from our raising and lowering operator recurrences. We also get for free, one variable models of the action of the symmetry algebra in terms of difference operators. We describe how the Stäckel transform acts and show that it preserves the structure equations.
AB - We develop our method to prove quantum superintegrability of an integrable 2D system, based on recurrence relations obeyed by the eigenfunctions of the system with respect to separable coordinates. We show that the method provides rigorous proofs of superintegrability and explicit constructions of higher order generators for the symmetry algebra. We apply the method to 5 families of systems, each depending on a parameter k, including most notably the caged anisotropic oscillator, the Tremblay, Turbiner and Winternitz system and a deformed Kepler-Coulomb system, and we give proofs of quantum superintegrability for all rational values of k, new for 4 of these systems. In addition, we show that the explicit information supplied by the special function recurrence relations allows us to prove, for the first time in 4 cases, that the symmetry algebra generated by our lowest order symmetries closes and to determine the associated structure equations of the algebras for each k. We have no proof that our generating symmetries are of lowest possible order, but we have no counterexamples, and we are confident we can can always find any missing generators from our raising and lowering operator recurrences. We also get for free, one variable models of the action of the symmetry algebra in terms of difference operators. We describe how the Stäckel transform acts and show that it preserves the structure equations.
KW - Quadratic algebras
KW - Special functions
KW - Superintegrability
UR - http://www.scopus.com/inward/record.url?scp=82655187068&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=82655187068&partnerID=8YFLogxK
U2 - 10.3842/SIGMA.2011.031
DO - 10.3842/SIGMA.2011.031
M3 - Article
AN - SCOPUS:82655187068
SN - 1815-0659
VL - 7
JO - Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)
JF - Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)
M1 - 031
ER -