@inproceedings{7877f80b91164c17964429b11a2d36f7,
title = "A reconfigurable computing platform for plume tracking with mobile sensor networks",
abstract = "Much work has been undertaken recently toward the development of low-power, high-performance sensor networks. There are many static remote sensing applications for which this is appropriate. The focus of this development effort is applications that require higher performance computation, but still involve severe constraints on power and other resources. Toward that end, we are developing a reconfigurable computing platform for miniature robotic and humandeployed sensor systems composed of several mobile nodes. The system provides static and dynamic reconfigurability for both software and hardware by the combination of CPU (central processing unit) and FPGA (field-programmable gate array) allowing on-the-fly reprogrammability. Static reconfigurability of the hardware manifests itself in the form of a {"}morphing bus{"} architecture that permits the modular connection of various sensors with no bus interface logic. Dynamic hardware reconfigurability provides for the reallocation of hardware resources at run-time as the mobile, resource-constrained nodes encounter unknown environmental conditions that render various sensors ineffective. This computing platform will be described in the context of work on chemical/biological/radiological plume tracking using a distributed team of mobile sensors. The objective for a dispersed team of ground and/or aerial autonomous vehicles (or hand-carried sensors) is to acquire measurements of the concentration of the chemical agent from optimal locations and estimate its source and spread. This requires appropriate distribution, coordination and communication within the team members across a potentially unknown environment. The key problem is to determine the parameters of the distribution of the harmful agent so as to use these values for determining its source and predicting its spread. The accuracy and convergence rate of this estimation process depend not only on the number and accuracy of the sensor measurements but also on their spatial distribution over time (the sampling strategy). For the safety of a humandeployed distribution of sensors, optimized trajectories to minimize human exposure are also of importance. The systems described in this paper are currently being developed. Parts of the system are already hi existence and some results from these are described.",
keywords = "Plume tracking, Reconfigurable computing, Sensor networks",
author = "Kim, {Byung Hwa} and Colin D'Souza and Voyles, {Richard M.} and Joel Hesch and Stergios Roumeliotis",
year = "2006",
doi = "10.1117/12.668961",
language = "English (US)",
isbn = "0819462861",
series = "Proceedings of SPIE - The International Society for Optical Engineering",
booktitle = "Unmanned Systems Technology VIII",
note = "Unmanned Systems Technology VIII ; Conference date: 17-04-2006 Through 20-04-2006",
}