A Quantitative Assessment of the Impact on Spatial Understanding of Exploring a Complex Immersive Virtual Environment using Augmented Real Walking versus Flying

Victoria Interrante, Eleanor O'Rourke, Leanne Gray, Lee Anderson, Brian Ries

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Scopus citations

Abstract

When an immersive virtual environment spans an area that is larger than the available physical space for real walking, one may use an 'augmented walking' method such as Seven League Boots to enable participants to explore the space while gaining proprioceptive feedback that is similar to what they would experience with normal walking. In this paper, we present the results of a preliminary experiment in which we seek to quantitatively assess the extent to which participants are able to make more accurate spatial judgments about the locations of previously-seen targets in a complicated virtual city environment, experienced using a head-mounted display, after traveling to them using augmented real walking ('boots') versus virtual walking enabled by a button press on a hand-held wand. In a series of trials, we ask participants to follow paths of increasing complexity from a home base to different hidden targets in the environment and back. At each endpoint, with the path markings turned off, we ask participants to point, through the intervening alleyway walls, to the location they believe they started from. Participants are able to make real turns with their bodies in both locomotion conditions, however they are able to make real forward movement only under the augmented walking condition. Each participant completes eight trials under each locomotion condition, with the target locations and the order of experiencing each method counterbalanced between participants. In data collected from six participants so far, we are finding that the median angle error is significantly greater, overall, in the wand locomotion condition than in the 'boots' locomotion condition, and that the errors tend to increase, overall, as the path complexity increases (from two segments to four segments) in the wand locomotion condition but not in the 'boots' locomotion condition.

Original languageEnglish (US)
Title of host publicationEurographics Symposium on Virtual Environments, EGVE 2007 - Short Papers and Posters
EditorsBernd Froehlich, Roland Blach, Robert van Liere
PublisherThe Eurographics Association
Pages75-78
Number of pages4
ISBN (Electronic)9783905673647
StatePublished - 2007
Event13th Eurographics Symposium on Virtual Environments, EGVE 2007 - Weimar, Germany
Duration: Jul 15 2007Jul 18 2007

Publication series

NameEurographics Symposium on Virtual Environments, EGVE 2007 - Short Papers and Posters

Conference

Conference13th Eurographics Symposium on Virtual Environments, EGVE 2007
Country/TerritoryGermany
CityWeimar
Period7/15/077/18/07

Bibliographical note

Publisher Copyright:
© The Eurographics Association 2007.

Fingerprint

Dive into the research topics of 'A Quantitative Assessment of the Impact on Spatial Understanding of Exploring a Complex Immersive Virtual Environment using Augmented Real Walking versus Flying'. Together they form a unique fingerprint.

Cite this