A qualitative and quantitative model for climate-driven lake formation on carbonate platforms based on examples from the Bahamian archipelago

Lisa E. Park Boush, Amy Myrbo, Andrew Michelson

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

Lakes on carbonate platform islands such as the Bahamas display wide variability in morphometry, chemistry, and fauna. These parameters are ultimately driven by climate, sea level, and carbonate accumulation and dissolution. The authors propose a model that integrates climatological, geomorphological, and stratigraphic frameworks to understand processes of carbonate-hosted lake formation and limnological characteristics in modern day environments, with applications to carbonate lake sedimentary records. Fifty-two lakes from San Salvador Island and Eleuthera, Bahamas, were examined for water chemistry, basin morphology, conduit development, conductivity, and major ions. Using non-metric, multi-dimensional scaling ordination methods, the authors derived a model dividing lakes into either constructional or destructional formational modes. Constructional lakes were further divided into pre-highstand and highstand types based on whether their formation occurred during a marine regressive or transgressive phase. Destructional lakes are created continually by dissolution of bedrock at fresh/saline water interfaces and their formation is therefore related to changing climate and sea level. This model shows that lake formation is influenced by the hydrologic balance associated with climatic conditions that drives karst dissolution as well as the deposition of aeolian dune ridges that isolate basins due to sea-level fluctuations. It allows for testing and examining the climatic and hydrologic regime as related to carbonate accumulation and dissolution through time, and for an improved understanding of lake sensitivity and response to climate as preserved in the lacustrine sedimentary record.

Original languageEnglish (US)
Pages (from-to)409-418
Number of pages10
JournalCarbonates and Evaporites
Volume29
Issue number4
DOIs
StatePublished - Nov 29 2014

Bibliographical note

Publisher Copyright:
© 2014, The Author(s).

Keywords

  • Bahamas
  • Carbonates
  • Eleuthera
  • Lakes
  • Saline
  • San Salvador

Fingerprint

Dive into the research topics of 'A qualitative and quantitative model for climate-driven lake formation on carbonate platforms based on examples from the Bahamian archipelago'. Together they form a unique fingerprint.

Cite this