TY - JOUR
T1 - A practical methodology to measure unbiased gas chromatographic retention factor vs. temperature relationships
AU - Peng, Baijie
AU - Kuo, Mei Yi
AU - Yang, Panhia
AU - Hewitt, Joshua T.
AU - Boswell, Paul G.
N1 - Publisher Copyright:
© 2014 Elsevier B.V.All rights reserved.
PY - 2014/12/29
Y1 - 2014/12/29
N2 - Compound identification continues to be a major challenge. Gas chromatography-mass spectrometry (GC-MS) is a primary tool used for this purpose, but the GC retention information it provides is underutilized because existing retention databases are experimentally restrictive and unreliable. A methodology called "retention projection" has the potential to overcome these limitations, but it requires the retention factor (. k) vs. T relationship of a compound to calculate its retention time. Direct methods of measuring k vs. T relationships from a series of isothermal runs are tedious and time-consuming. Instead, a series of temperature programs can be used to quickly measure the k vs. T relationships, but they are generally not as accurate when measured this way because they are strongly biased by non-ideal behavior of the GC system in each of the runs. In this work, we overcome that problem by using the retention times of 25 n-alkanes to back-calculate the effective temperature profile and hold-up time vs. T profiles produced in each of the six temperature programs. When the profiles were measured this way and taken into account, the k vs. T relationships measured from each of two different GC-MS instruments were nearly as accurate as the ones measured isothermally, showing less than two-fold more error. Furthermore, temperature-programmed retention times calculated in five other laboratories from the new k vs. T relationships had the same distribution of error as when they were calculated from k vs. T relationships measured isothermally. Free software was developed to make the methodology easy to use. The new methodology potentially provides a relatively fast and easy way to measure unbiased k vs. T relationships.
AB - Compound identification continues to be a major challenge. Gas chromatography-mass spectrometry (GC-MS) is a primary tool used for this purpose, but the GC retention information it provides is underutilized because existing retention databases are experimentally restrictive and unreliable. A methodology called "retention projection" has the potential to overcome these limitations, but it requires the retention factor (. k) vs. T relationship of a compound to calculate its retention time. Direct methods of measuring k vs. T relationships from a series of isothermal runs are tedious and time-consuming. Instead, a series of temperature programs can be used to quickly measure the k vs. T relationships, but they are generally not as accurate when measured this way because they are strongly biased by non-ideal behavior of the GC system in each of the runs. In this work, we overcome that problem by using the retention times of 25 n-alkanes to back-calculate the effective temperature profile and hold-up time vs. T profiles produced in each of the six temperature programs. When the profiles were measured this way and taken into account, the k vs. T relationships measured from each of two different GC-MS instruments were nearly as accurate as the ones measured isothermally, showing less than two-fold more error. Furthermore, temperature-programmed retention times calculated in five other laboratories from the new k vs. T relationships had the same distribution of error as when they were calculated from k vs. T relationships measured isothermally. Free software was developed to make the methodology easy to use. The new methodology potentially provides a relatively fast and easy way to measure unbiased k vs. T relationships.
KW - Gas chromatography-mass spectrometry
KW - Retention database
KW - Retention library
KW - Retention prediction
KW - Retention projection
UR - http://www.scopus.com/inward/record.url?scp=84916226761&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84916226761&partnerID=8YFLogxK
U2 - 10.1016/j.chroma.2014.11.018
DO - 10.1016/j.chroma.2014.11.018
M3 - Article
AN - SCOPUS:84916226761
SN - 0021-9673
VL - 1374
SP - 207
EP - 215
JO - Journal of Chromatography A
JF - Journal of Chromatography A
ER -