A POWER TAKE-OFF (PTO) FOR WAVE ENERGY CONVERTERS BASED ON THE HYBRID HYDRAULIC-ELECTRIC ARCHITECTURE (HHEA)

Jackson Wills, Adam Keester, Perry Y. Li

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Wave energy is a promising renewable energy resource for coastal regions around the world, but is not yet an economically competitive source of electricity. More effective power take-off (PTO) designs would help to make wave power a feasible and clean source of energy. To do this, PTOs need to: i) enable controlled actuation, ii) convert absorbed energy into electricity efficiently, and iii) have minimal manufacturing costs. We propose a new PTO architecture that can exert arbitrary control loads on the WEC to maximize energy capture, enabling the downsizing of expensive electrical components while maintaining high efficiency. Our PTO design is based upon a hybrid hydraulic-electric architecture (HHEA). This paper compares the performance of the HHEA PTO against two other PTO designs: 1) a baseline PTO consisting of a system of rectifying check valves and accumulators, and 2) a PTO consisting of an electro-hydraulic actuator (EHA). The HHEA PTO is shown to produce much more power than the check valve PTO and the EHA PTO. Also, the required electric generator sizes for the HHEA are smaller than that of the EHA PTO. The reduced size of these components allows for a WEC which is less expensive to manufacture.

Original languageEnglish (US)
Title of host publicationProceedings of ASME/BATH 2021 Symposium on Fluid Power and Motion Control, FPMC 2021
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791885239
DOIs
StatePublished - 2021
EventASME/BATH 2021 Symposium on Fluid Power and Motion Control, FPMC 2021 - Virtual, Online
Duration: Oct 19 2021Oct 21 2021

Publication series

NameProceedings of ASME/BATH 2021 Symposium on Fluid Power and Motion Control, FPMC 2021

Conference

ConferenceASME/BATH 2021 Symposium on Fluid Power and Motion Control, FPMC 2021
CityVirtual, Online
Period10/19/2110/21/21

Bibliographical note

Publisher Copyright:
Copyright © 2021 by ASME.All right reserved.

Fingerprint

Dive into the research topics of 'A POWER TAKE-OFF (PTO) FOR WAVE ENERGY CONVERTERS BASED ON THE HYBRID HYDRAULIC-ELECTRIC ARCHITECTURE (HHEA)'. Together they form a unique fingerprint.

Cite this