A Polymer Membrane Containing Fe0 as a Contaminant Barrier

Tsutomu Shimotori, Eric E. Nuxoll, Edward L. Cussler, William A. Arnold

Research output: Contribution to journalArticlepeer-review

37 Scopus citations


A poly(vinyl alcohol) (PVA) membrane containing iron (Fe0) particles was developed and tested as a model barrier for contaminant containment. Carbon tetrachloride, copper (Cu2+), nitrobenzene, 4-nitroacetophenone, and chromate (CrO42-) were selected as model contaminants. Compared with a pure PVA membrane, the Fe 0/PVA membrane can increase the breakthrough lag time for Cu 2+ and carbon tetrachloride by more than 100-fold. The increase in the lag time was smaller for nitrobenzene and 4-nitroacetophenone, which stoichiometrically require more iron and for which the PVA membrane has a higher permeability. The effect of Fe0 was even smaller for CrO 42- because of its slow reaction. Forty-five percent of the iron, based on the content in the dry membrane prior to hydration, was consumed by reaction with Cu2+ and 15% by reaction with carbon tetrachloride. Similarly, 25%, 17%, and 6% of the iron was consumed by nitrobenzene, 4-nitroacetophenone, and CrO42-, respectively. These percentages approximately double when the loss of iron during membrane hydration is considered. The permeability of the Fe 0/PVA membrane after breakthrough was within a factor of 3 for that of pure PVA, consistent with theory. These results suggest that polymer membranes with embedded Fe0 have potential as practical contaminant barriers.

Original languageEnglish (US)
Pages (from-to)2264-2270
Number of pages7
JournalEnvironmental Science and Technology
Issue number7
StatePublished - Apr 1 2004


Dive into the research topics of 'A Polymer Membrane Containing Fe0 as a Contaminant Barrier'. Together they form a unique fingerprint.

Cite this