TY - JOUR
T1 - A novel reduced immunogenicity bispecific targeted toxin simultaneously recognizing human epidermal growth factor and interleukin-4 receptors in a mouse model of metastatic breast carcinoma
AU - Oh, Seunguk
AU - Stish, Brad J.
AU - Sachdev, Deepali
AU - Chen, Hua
AU - Dudek, Arkadiusz Z.
AU - Vallera, Daniel A.
PY - 2009/10/1
Y1 - 2009/10/1
N2 - Purpose: To develop a targeted biological drug that when systemically injected can penetrate to metastatic breast cancer tumors, one needs a drug of high potency and reduced immunogenicity. Thus, we bioengineered a novel bispecific ligand-directed toxin (BLT) targeted by dual high-affinity cytokines with a PE38KDEL COOH terminus. Our purpose was to reduce toxin immunogenicity using mutagenesis, measure the ability of mutated drug to elicit B-cell antitoxin antibody responses, and show that mutated drug was effective against systemic breast cancer in vivo. Experimental Design: A new BLTwas created in which both human epidermal growth factor (EGF) and interleukin 4 cytokines were cloned onto the same single-chain molecule with truncated Pseudomonas exotoxin (PE38). Site-specific mutagenesis was used to mutate amino acids in seven key epitopic toxin regions that dictate B-cell generation of neutralizing antitoxin antibodies. Bioassays were used to determine whether mutation reduced potency, and ELISA studies were done to determine whether antitoxin antibodies were reduced. Finally, a genetically altered luciferase xenograft model was used; this model could be imaged in real time to determine the effect on the systemic malignant human breast cancer MDA-MB-231. Results: EGF4KDEL 7mut was significantly effective against established systemic human breast cancer and prevented metastatic spread. Mutagenesis reduced immunogenicity by ∼90% with no apparent loss in in vitro or in vivo activity. Conclusions: Because EGF4KDEL 7mut was highly effective even when we waited 26 days to begin therapy and because immunogenicity was significantly reduced, we can now give multiple drug treatments for chemotherapy-refractory breast cancer in clinical trials.
AB - Purpose: To develop a targeted biological drug that when systemically injected can penetrate to metastatic breast cancer tumors, one needs a drug of high potency and reduced immunogenicity. Thus, we bioengineered a novel bispecific ligand-directed toxin (BLT) targeted by dual high-affinity cytokines with a PE38KDEL COOH terminus. Our purpose was to reduce toxin immunogenicity using mutagenesis, measure the ability of mutated drug to elicit B-cell antitoxin antibody responses, and show that mutated drug was effective against systemic breast cancer in vivo. Experimental Design: A new BLTwas created in which both human epidermal growth factor (EGF) and interleukin 4 cytokines were cloned onto the same single-chain molecule with truncated Pseudomonas exotoxin (PE38). Site-specific mutagenesis was used to mutate amino acids in seven key epitopic toxin regions that dictate B-cell generation of neutralizing antitoxin antibodies. Bioassays were used to determine whether mutation reduced potency, and ELISA studies were done to determine whether antitoxin antibodies were reduced. Finally, a genetically altered luciferase xenograft model was used; this model could be imaged in real time to determine the effect on the systemic malignant human breast cancer MDA-MB-231. Results: EGF4KDEL 7mut was significantly effective against established systemic human breast cancer and prevented metastatic spread. Mutagenesis reduced immunogenicity by ∼90% with no apparent loss in in vitro or in vivo activity. Conclusions: Because EGF4KDEL 7mut was highly effective even when we waited 26 days to begin therapy and because immunogenicity was significantly reduced, we can now give multiple drug treatments for chemotherapy-refractory breast cancer in clinical trials.
UR - http://www.scopus.com/inward/record.url?scp=70349653790&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=70349653790&partnerID=8YFLogxK
U2 - 10.1158/1078-0432.CCR-09-0696
DO - 10.1158/1078-0432.CCR-09-0696
M3 - Article
C2 - 19789305
AN - SCOPUS:70349653790
SN - 1078-0432
VL - 15
SP - 6137
EP - 6147
JO - Clinical Cancer Research
JF - Clinical Cancer Research
IS - 19
ER -