A novel membrane fusion-mediated plant immunity against bacterial pathogens

Noriyuki Hatsugai, Shinji Iwasaki, Kentaro Tamura, Maki Kondo, Kentaro Fuji, Kimi Ogasawara, Mikio Nishimura, Ikuko Hara-Nishimura

Research output: Contribution to journalArticlepeer-review

227 Scopus citations


Plants have developed their own defense strategies because they have no immune cells. A common plant defense strategy involves programmed cell death (PCD) at the infection site, but how the PCD-associated cell-autonomous immunity is executed in plants is not fully understood. Here we provide a novel mechanism underlying cell-autonomous immunity, which involves the fusion of membranes of a large central vacuole with the plasma membrane, resulting in the discharge of vacuolar antibacterial proteins to the outside of the cells, where bacteria proliferate. The extracellular fluid that was discharged from the vacuoles of infected leaves had both antibacterial activity and cell death-inducing activity. We found that a defect in proteasome function abolished the membrane fusion associated with both disease resistance and PCD in response to avirulent bacterial strains but not to a virulent strain. Furthermore, RNAi plants with a defective proteasome subunit PBA1 have reduced DEVDase activity, which is an activity associated with caspase-3, one of the executors of animal apoptosis. The plant counterpart of caspase-3 has not yet been identified. Our results suggest that PBA1 acts as a plant caspase-3-like enzyme. Thus, this novel defense strategy through proteasome-regulating membrane fusion of the vacuolar and plasma membranes provides plants with a mechanism for attacking intercellular bacterial pathogens.

Original languageEnglish (US)
Pages (from-to)2496-2506
Number of pages11
JournalGenes and Development
Issue number21
StatePublished - Nov 1 2009
Externally publishedYes


  • Caspase activity
  • Cell-autonomous immunity
  • Hypersensitive response
  • Membrane fusion
  • Programmed cell death
  • Proteasome


Dive into the research topics of 'A novel membrane fusion-mediated plant immunity against bacterial pathogens'. Together they form a unique fingerprint.

Cite this