A novel automotive transmission clutch control mechanism

Mohd Azrin Mohd Zulkefli, Xingyong Song, Zongxuan Sun, Hsu Chiang Miao

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Clutch fill control is critical for automotive transmission performance and fuel economy, including both automatic and hybrid transmissions. To ensure proper function of the transmission systems, it is important to have a precise and robust clutch fill process. Current clutch fill control is realized in an open loop fashion, due to the lack of a pressure or position sensor in the clutch chamber. To improve the accuracy and robustness of this system, a new clutch control mechanism is proposed, which includes an internal feedback structure without a pressure or position sensor. First, the design and working principles of the new mechanism are presented. Second, the advantages of the internal feedback mechanism are analyzed and shown to be superior to the traditional clutch fill mechanism. To this end, the dynamic model of the new mechanism is formulated. Through a series of simulations and case studies, the new clutch control mechanism is demonstrated to be effective, efficient, and robust for solving the clutch fill and engagement control problem.

Original languageEnglish (US)
Title of host publicationProceedings of the ASME Dynamic Systems and Control Conference 2009, DSCC2009
PublisherAmerican Society of Mechanical Engineers (ASME)
Pages1531-1538
Number of pages8
EditionPART B
ISBN (Print)9780791848920
DOIs
StatePublished - 2010
Event2009 ASME Dynamic Systems and Control Conference, DSCC2009 - Hollywood, CA, United States
Duration: Oct 12 2009Oct 14 2009

Publication series

NameProceedings of the ASME Dynamic Systems and Control Conference 2009, DSCC2009
NumberPART B

Other

Other2009 ASME Dynamic Systems and Control Conference, DSCC2009
Country/TerritoryUnited States
CityHollywood, CA
Period10/12/0910/14/09

Fingerprint

Dive into the research topics of 'A novel automotive transmission clutch control mechanism'. Together they form a unique fingerprint.

Cite this