A note on the connection and equivalence of three sparse linear discriminant analysis methods

Qing Mai, Hui Zou

Research output: Contribution to journalArticlepeer-review

16 Scopus citations

Abstract

In this article, we reveal the connection between and equivalence of three sparse linear discriminant analysis methods: the ℓ1-Fishers discriminant analysis proposed by Wu et al. in 2008, the sparse optimal scoring proposed by Clemmensen et al. in 2011, and the direct sparse discriminant analysis (DSDA) proposed by Mai et al. in 2012. It is shown that, for any sequence of penalization parameters, the normalized solutions of DSDA equal the normalized solutions of the other two methods at different penalization parameters. A prostate cancer dataset is used to demonstrate the theory.

Original languageEnglish (US)
Pages (from-to)243-246
Number of pages4
JournalTechnometrics
Volume55
Issue number2
DOIs
StatePublished - May 1 2013

Bibliographical note

Funding Information:
The authors thank the Editor, the Associate Editor, and two referees for their helpful comments and suggestions. This work is supported in part by NSF grant DMS-08-46068. The second author was supported by Fondecyt 11121131 grant.

Keywords

  • Direct sparse discriminant analysis
  • Sparse optimal scoring
  • ℓ 1-Fishers discriminant analysis

Fingerprint Dive into the research topics of 'A note on the connection and equivalence of three sparse linear discriminant analysis methods'. Together they form a unique fingerprint.

Cite this