Abstract
Imaging of head and neck vasculature continues to improve with the application of new technology. To judge the value of new technologies reported in the literature, it is imperative to develop objective standards optimized against bias and favoring statistical power and clinical relevance. A review of the existing literature identified the following items as lending scientific value to a report on imaging technology: prospective design, comparison with an accepted modality, unbiased patient selection, standardized image acquisition, blinded interpretation, and measurement of reliability. These were incorporated into a new grading scheme. Two physicians tested the new scheme and an established scheme to grade reports published in the medical literature. Inter-observer reliability for both methods was calculated using the kappa coefficient. A total of 22 reports evaluating imaging modalities for cervical internal carotid artery stenosis were identified from a literature search and graded by both schemes. Agreement between the two physicians in grading the level of scientific evidence using the new scheme was excellent (kappa coefficient: 0.93, p<0.0001). Agreement using the established scheme was less rigorous (kappa coefficient: 0.39, p<0.0001). The weighted kappa coefficients were 0.95 and 0.38 for the new and established schemes, respectively. Overall agreement was higher for the newer scheme (95% versus 64%). The new grading scheme can be used reliably to categorize the strength of scientific knowledge provided by individual studies of vascular imaging. The new method could assist clinicians and researchers in determining appropriate clinical applications of newly reported technical advances.
Original language | English (US) |
---|---|
Pages (from-to) | RA181-RA187 |
Journal | Medical Science Monitor |
Volume | 13 |
Issue number | 10 |
State | Published - Oct 1 2007 |
Keywords
- Angiography
- Carotid stenosis
- Cerebrovascular diseases
- Evidence-based
- Grading
- Guidelines
- Imaging
- Magnetic resonance imaging