TY - JOUR
T1 - A new CULLIN 1 mutant has altered responses to hormones and light in Arabidopsis
AU - Moon, Jennifer
AU - Zhao, Yunde
AU - Dai, Xinhua
AU - Zhang, Wenjing
AU - Gray, William M.
AU - Huq, Enamul
AU - Estelle, Mark
PY - 2007/2
Y1 - 2007/2
N2 - Regulated protein degradation contributes to plant development by mediating signaling events in many hormone, light, and developmental pathways. Ubiquitin ligases recognize and ubiquitinate target proteins for subsequent degradation by the 26S proteasome. The multisubunit SCF is the best-studied class of ubiquitin ligases in Arabidopsis (Arabidopsis thaliana). However, the extent of SCF participation in signaling networks is unclear. SCFs are composed of four subunits: CULLIN 1 (CUL1), ASK, RBX1, and an F-box protein. Null mutations in CUL1 are embryo lethal, limiting insight into the role of CUL1 and SCFs in later stages of development. Here, we describe a viable and fertile weak allele of CUL1, called cul1-6. cul1-6 plants have defects in seedling and adult morphology. In addition to reduced auxin sensitivity, cul1-6 seedlings are hyposensitive to ethylene, red, and blue light conditions. An analysis of protein interactions with the cul1-6 gene product suggests that both RUB (related to ubiquitin) modification and interaction with the SCF regulatory protein CAND1 (cullin associated and neddylation dissociated) are disrupted. These findings suggest that the morphological defects observed in cul1-6 plants are caused by defective SCF complex formation. Characterization of weak cul1 mutants provides insight into the role of SCFs throughout plant growth and development.
AB - Regulated protein degradation contributes to plant development by mediating signaling events in many hormone, light, and developmental pathways. Ubiquitin ligases recognize and ubiquitinate target proteins for subsequent degradation by the 26S proteasome. The multisubunit SCF is the best-studied class of ubiquitin ligases in Arabidopsis (Arabidopsis thaliana). However, the extent of SCF participation in signaling networks is unclear. SCFs are composed of four subunits: CULLIN 1 (CUL1), ASK, RBX1, and an F-box protein. Null mutations in CUL1 are embryo lethal, limiting insight into the role of CUL1 and SCFs in later stages of development. Here, we describe a viable and fertile weak allele of CUL1, called cul1-6. cul1-6 plants have defects in seedling and adult morphology. In addition to reduced auxin sensitivity, cul1-6 seedlings are hyposensitive to ethylene, red, and blue light conditions. An analysis of protein interactions with the cul1-6 gene product suggests that both RUB (related to ubiquitin) modification and interaction with the SCF regulatory protein CAND1 (cullin associated and neddylation dissociated) are disrupted. These findings suggest that the morphological defects observed in cul1-6 plants are caused by defective SCF complex formation. Characterization of weak cul1 mutants provides insight into the role of SCFs throughout plant growth and development.
UR - http://www.scopus.com/inward/record.url?scp=34247230278&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34247230278&partnerID=8YFLogxK
U2 - 10.1104/pp.106.091439
DO - 10.1104/pp.106.091439
M3 - Article
C2 - 17158585
AN - SCOPUS:34247230278
SN - 0032-0889
VL - 143
SP - 684
EP - 696
JO - Plant physiology
JF - Plant physiology
IS - 2
ER -