TY - JOUR
T1 - A new approach to visualizing spectral density functions and deriving motional correlation time distributions
T2 - Applications to an α-helix-forming peptide and to a well-folded protein
AU - Idiyatullin, Djaudat S
AU - Daragan, Vladimir A.
AU - Mayo, Kevin H
N1 - Funding Information:
This work was supported by research grants from the National Institutes of Health (GM-58005) and the National Science Foundation (MCB-9729539) and benefitted from use of the high field NMR facility at the University of Minnesota.
PY - 2001
Y1 - 2001
N2 - A new approach to visualizing spectral densities and analyzing NMR relaxation data has been developed. By plotting the spectral density function, J(ω), as F(ω) = 2ωJ(ω) on the log-log scale, the distribution of motional correlation times can be easily visualized. F(ω) is calculated from experimental data using a multi-Lorentzian expansion that is insensitive to the number of Lorentzians used and allows contributions from overall tumbling and internal motions to be separated without explicitly determining values for correlation times and their weighting coefficients. To demonstrate the approach, 15N and 13C NMR relaxation data have been analyzed for backbone NH and CαH groups in an α-helix-forming peptide 17mer and in a well-folded 138-residue protein, and the functions F(ω) have been calculated and deconvoluted for contributions from overall tumbling and internal motions. Overall tumbling correlation time distribution maxima yield essentially the same overall correlation times obtained using the Lipari-Szabo model and other standard NMR relaxation data analyses. Internal motional correlational times for NH and CαH bond motions fall in the range from 100 ps to about 1 ns. Slower overall molecular tumbling leads to better separation of internal motional correlation time distributions from those of overall tumbling. The usefulness of the approach rests in its ability to visualize spectral densities and to define and separate frequency distributions for molecular motions.
AB - A new approach to visualizing spectral densities and analyzing NMR relaxation data has been developed. By plotting the spectral density function, J(ω), as F(ω) = 2ωJ(ω) on the log-log scale, the distribution of motional correlation times can be easily visualized. F(ω) is calculated from experimental data using a multi-Lorentzian expansion that is insensitive to the number of Lorentzians used and allows contributions from overall tumbling and internal motions to be separated without explicitly determining values for correlation times and their weighting coefficients. To demonstrate the approach, 15N and 13C NMR relaxation data have been analyzed for backbone NH and CαH groups in an α-helix-forming peptide 17mer and in a well-folded 138-residue protein, and the functions F(ω) have been calculated and deconvoluted for contributions from overall tumbling and internal motions. Overall tumbling correlation time distribution maxima yield essentially the same overall correlation times obtained using the Lipari-Szabo model and other standard NMR relaxation data analyses. Internal motional correlational times for NH and CαH bond motions fall in the range from 100 ps to about 1 ns. Slower overall molecular tumbling leads to better separation of internal motional correlation time distributions from those of overall tumbling. The usefulness of the approach rests in its ability to visualize spectral densities and to define and separate frequency distributions for molecular motions.
UR - http://www.scopus.com/inward/record.url?scp=0035742209&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0035742209&partnerID=8YFLogxK
U2 - 10.1006/jmre.2001.2372
DO - 10.1006/jmre.2001.2372
M3 - Article
C2 - 11531372
AN - SCOPUS:0035742209
SN - 1090-7807
VL - 152
SP - 132
EP - 148
JO - Journal of Magnetic Resonance
JF - Journal of Magnetic Resonance
IS - 1
ER -