Abstract
Our previous data indicated that a Myxococcus xanthus sensor-type adenylyl cyclase (CyaA) functions in signal transduction during osmotic stress. However, the cAMP-mediated signal transduction pathway in this bacterium was unknown. Here, we isolated a clone from a M. xanthus genomic DNA library using oligonucleotide probes designed based on the conserved cAMP-binding domains of the cAMP-dependent protein kinase (PKA) regulatory subunits. The clone contained two open-reading frames (ORFs), cbpA and cbpB, encoding hydrophilic proteins with one and two cAMP-binding domains, respectively. The CbpB exhibited partial primary structural similarity to PKA regulatory subunits. cbpA and cbpB mutants, generated by gene disruption, showed normal growth, development and spore germination. However, the cbpB mutant cultured under high- or low-temperature conditions exhibited a marked reduction in growth. cbpB mutant cells were also more sensitive to osmotic stress than wild-type cells. The cbpA mutant possessed normal resistance to such stress. The phenotype of cbpB mutant was similar to those of PKA regulatory subunit mutants of some eukaryotic microorganisms.
Original language | English (US) |
---|---|
Pages (from-to) | 75-83 |
Number of pages | 9 |
Journal | FEMS Microbiology Letters |
Volume | 244 |
Issue number | 1 |
DOIs | |
State | Published - Mar 1 2005 |
Keywords
- Myxococcus xanthus
- Osmotic stress
- PKA regulatory subunit
- Temperature stress
- cAMP signaling
- cAMP-binding domain