## Abstract

We propose a multiconfigurational hybrid density-functional theory which rigorously combines a multiconfiguration self-consistent-field calculation with a density-functional approximation based on a linear decomposition of the electron-electron interaction. This gives a straightforward extension of the usual hybrid approximations by essentially adding a fraction λ of exact static correlation in addition to the fraction λ of exact exchange. Test calculations on the cycloaddition reactions of ozone with ethylene or acetylene and the dissociation of diatomic molecules with the Perdew-Burke-Ernzerhof and Becke-Lee-Yang-Parr density functionals show that a good value of λ is 0.25, as in the usual hybrid approximations. The results suggest that the proposed multiconfigurational hybrid approximations can improve over usual density-functional calculations for situations with strong static correlation effects.

Original language | English (US) |
---|---|

Pages (from-to) | 864 |

Number of pages | 1 |

Journal | Journal of Chemical Physics |

Volume | 137 |

Issue number | 4 |

DOIs | |

State | Published - Jul 28 2012 |