A mitogen-activated protein kinase gene (MGV1) in Fusarium graminearum is required for female fertility, heterokaryon formation, and plant infection

Zhanming Hou, Chaoyang Xue, Youliang Peng, Talma Katan, H. Corby Kistler, Jin Rong Xu

Research output: Contribution to journalArticlepeer-review

302 Scopus citations

Abstract

Fusarium graminearum is an important pathogen of small grains and maize in many areas of the world. Infected grains are often contaminated with mycotoxins harmful to humans and animals. During the past decade, F. graminearum has caused several severe epidemics of head scab in wheat and barley. In order to understand molecular mechanisms regulating fungal development and pathogenicity in this pathogen, we isolated and characterized a MAP kinase gene, MGVI, which is highly homologous to the MPSI gene in Magnaporthe grisea. The MGV1 gene was dispensable for conidiation in F. graminearum but essential for female fertility during sexual reproduction. Vegetative growth of mgv1 deletion mutants was normal in liquid media but reduced on solid media. Mycelia of the mgv1 mutants had weak cell walls and were hypersensitive to cell wall degrading enzymes. Interestingly, the mgv1 mutants were self-incompatible when tested for heterokaryon formation, and their virulence was substantially reduced. The ability of the mutants to accumulate trichothecene mycotoxins on inoculated wheat was also greatly reduced. Our data suggest that MGV1 in F. graminearum is involved in multiple developmental processes related to sexual reproduction, plant infection, and cell wall integrity.

Original languageEnglish (US)
Pages (from-to)1119-1127
Number of pages9
JournalMolecular Plant-Microbe Interactions
Volume15
Issue number11
DOIs
StatePublished - Nov 1 2002

Keywords

  • Fungal pathogenicity
  • Gibberella zeae

Fingerprint Dive into the research topics of 'A mitogen-activated protein kinase gene (MGV1) in Fusarium graminearum is required for female fertility, heterokaryon formation, and plant infection'. Together they form a unique fingerprint.

Cite this