A method for estimating the power of moments

Shuhua Chang, Deli Li, Yongcheng Qi, Andrew Rosalsky

Research output: Contribution to journalArticlepeer-review

Abstract

Let X be an observable random variable with unknown distribution function F(x) = P(X≤ x) , − ∞ OpenSPiltSPi xOpenSPiltSPi ∞ , and let θ=sup{r≥0:E|X|rOpenSPiltSPi∞}.We call θ the power of moments of the random variable X. Let X1, X2, … , Xn be a random sample of size n drawn from F(⋅). In this paper we propose the following simple point estimator of θ and investigate its asymptotic properties: θˆn=lognlogmax1≤k≤n|Xk|where log x= ln (e∨ x) , − ∞ OpenSPiltSPi xOpenSPiltSPi ∞. In particular, we show that θˆn→Pθif and only iflimx→∞xrP(|X|CloseSPigtSPix)=∞∀rCloseSPigtSPiθ. This means that, under very reasonable conditions on F(⋅) , θˆ n is actually a consistent estimator of θ.

Original languageEnglish (US)
Article number54
JournalJournal of Inequalities and Applications
Volume2018
DOIs
StatePublished - 2018

Bibliographical note

Publisher Copyright:
© 2018, The Author(s).

Keywords

  • Asymptotic theorems
  • Consistent estimator
  • Point estimator
  • Power of moments

Fingerprint

Dive into the research topics of 'A method for estimating the power of moments'. Together they form a unique fingerprint.

Cite this