Abstract
We study the problem that arises in a class of stochastic processes referred to as Stochastic Hybrid Systems (SHS) when computing the moments of the states using the generator of the process and Dynkin's formula. We focus on the case when the SHS is at equilibrium or approaching equilibrium. We present a family of such processes for which infinite-dimensional linear-system analysis tools are ineffective, and discuss a few differing perspectives on how to tackle such problems by assuming that the SHS state distribution is such that its entropy is maximum. We also provide a numerical algorithm that allows us to efficiently compute maximum entropy solutions, and compare results with Monte Carlo simulations for some illustrative SHS.
Original language | English (US) |
---|---|
Article number | 7039471 |
Pages (from-to) | 747-752 |
Number of pages | 6 |
Journal | Proceedings of the IEEE Conference on Decision and Control |
Volume | 2015-February |
Issue number | February |
DOIs | |
State | Published - Jan 1 2014 |
Event | 2014 53rd IEEE Annual Conference on Decision and Control, CDC 2014 - Los Angeles, United States Duration: Dec 15 2014 → Dec 17 2014 |