A Mathematical Model to Analyze the Torque Caused by Fluid-Solid Interaction on a Hydraulic Valve

Emma Frosina, Adolfo Senatore, Dario Buono, Kim A Stelson

Research output: Contribution to journalArticle

17 Scopus citations

Abstract

In this paper, a three-dimensional (3D) computational fluid dynamics (CFD) methodology to improve the performance of hydraulic components will be shown, highlighting the importance that a study in the fluid mechanics field has for their optimization. As known, the valve internal geometry influences proportional spool valve hydraulic performance, axial flow forces, and spin effects on the spool. Axial flow forces and spin effects interact directly with the position control performance of a direct actuating closed-loop control valve, reducing its capability. The goal of this activity is the study of the torque on the spool induced by the flow and using a CFD 3D methodology to identify causes of this phenomenon and to find a general mathematical solution to minimize the spool spin effect. The baseline configuration and the new ones of the proportional four-way three-position closed-loop control spool valve have been studied with a mathematical model. The models were also validated by the experimental data performed in the Hydraulic Lab of the University of Naples. In particular, the tests allowed to measure the torque on the spool varying the oil flow rate, using a dedicated test bench layout where the spool was directly connected to a torque meter. Several geometries have been analyzed to find the best one to minimize spool spin behavior while maintaining an acceptable pressure drop. The study results confirmed the significant improvement of overall component performance.

Original languageEnglish (US)
Article number061103
JournalJournal of Fluids Engineering, Transactions of the ASME
Volume138
Issue number6
DOIs
StatePublished - Jun 1 2016

Fingerprint Dive into the research topics of 'A Mathematical Model to Analyze the Torque Caused by Fluid-Solid Interaction on a Hydraulic Valve'. Together they form a unique fingerprint.

  • Cite this