A light-front coupled-cluster method for quantum field theories

John Hiller

Research output: Contribution to journalConference articlepeer-review

Abstract

The Hamiltonian eigenvalue problem for bound states of a quantum field theory is formulated in terms of Dirac's light-front coordinates and then approximated by the exponential-operator technique of the standard coupled-cluster method. This approximation eliminates any need for the usual approximation of Fock-space truncation. Instead, the exponential operator is truncated and the terms retained are determined by a set of nonlinear integral equations. These equations are solved simultaneously with an effective eigenvalue problem in the valence sector, where the number of constituents is small. Matrix elements can be calculated, with extensions of techniques from standard coupled-cluster theory.

Original languageEnglish (US)
JournalProceedings of Science
StatePublished - Dec 1 2012
Event6th International Conference on Quarks and Nuclear Physics, QNP 2012 - Palaiseau, Paris, France
Duration: Apr 16 2012Apr 20 2012

Fingerprint Dive into the research topics of 'A light-front coupled-cluster method for quantum field theories'. Together they form a unique fingerprint.

Cite this