A Leapfrog Strategy for Pursuit-Evasion in a Polygonal Environment

Brendan Ames, Andrew Beveridge, Rosalie Carlson, Claire Djang, Volkan Isler, Stephen Ragain, Maxray Savage

Research output: Contribution to journalArticlepeer-review

7 Scopus citations


We study pursuit-evasion in a polygonal environment with polygonal obstacles. In this turn based game, an evader e is chased by pursuers p1,p2,...,p. The players have full information about the environment and the location of the other players. The pursuers are allowed to coordinate their actions. On the pursuer turn, each pi can move to any point at distance at most 1 from his current location. On the evader turn, he moves similarly. The pursuers win if some pursuer becomes co-located with the evader in finite time. The evader wins if he can evade capture forever. It is known that one pursuer can capture the evader in any simply-connected polygonal environment, and that three pursuers are always sufficient in any polygonal environment P (possibly with polygonal obstacles). We contribute two new results to this field. First, we fully characterize when an environment with a single obstacle is one-pursuerwin or two-pursuer-win. Second, we give sufficient (but not necessary) conditions for an environment to have a winning strategy for two pursuers. Such environments can be swept by a leapfrog strategy in which the two cops alternately guard/increase the currently controlled area. The running time of this algorithm is O(ndiam(P)) where n is the number of vertices, h is the number of obstacles and diam(P)) is the diameter of the polygonal environment P. More concretely, for an environment with n vertices, we describe an O(n2) algorithm that (1) determines whether the obstacles are well-separated, and if so, (2) constructs the required partition for a leapfrog strategy.

Original languageEnglish (US)
Pages (from-to)77-100
Number of pages24
JournalInternational Journal of Computational Geometry and Applications
Issue number2
StatePublished - Jun 23 2015

Bibliographical note

Funding Information:
This work was supported in part by the Institute for Mathematics and its Applications and in part by NSF Grant DMS-1156701. Volkan Isler was supported in part by NSF Grant IIS-0917676.

Publisher Copyright:
© 2015 World Scientific Publishing Company.


  • Pursuit-evasion
  • sweepable polygon


Dive into the research topics of 'A Leapfrog Strategy for Pursuit-Evasion in a Polygonal Environment'. Together they form a unique fingerprint.

Cite this