A large-scale genome-wide association study in U.S. Holstein cattle

Jicai Jiang, Li Ma, Dzianis Prakapenka, Paul M. VanRaden, John B. Cole, Yang Da

Research output: Contribution to journalArticle

Abstract

Genome-wide association study (GWAS) is a powerful approach to identify genomic regions and genetic variants associated with phenotypes. However, only limited mutual confirmation from different studies is available. We conducted a large-scale GWAS using 294,079 first-lactation Holstein cows and identified new additive and dominance effects on five production traits, three fertility traits, and somatic cell score. Four chromosomes had the most significant SNP effects on the five production traits, a Chr14 region containing DGAT1 mostly had positive effects on fat yield and negative effects on milk and protein yields, the 88.07-89.60 Mb region of Chr06 with SLC4A4, GC, NPFFR2, and ADAMTS3 for milk and protein yields, the 30.03-36.67 Mb region of Chr20 with C6 and GHR for milk yield, and the 88.19-88.88 Mb region with ABCC9 as well as the 91.13-94.62 Mb region of Chr05 with PLEKHA5, MGST1, SLC15A5, and EPS8 for fat yield. For fertility traits, the SNP in GC of Chr06, and the SNPs in the 65.02-69.43 Mb region of Chr01 with COX17, ILDR1, and KALRN had the most significant effects for daughter pregnancy rate and cow conception rate, whereas SNPs in AFF1 of Chr06, the 47.54-52.79 Mb region of Chr07, TSPAN4 of Chr29, and NPAS1 of Chr18 had the most significant effects for heifer conception rate. For somatic cell score, GC of Chr06 and PRLR of Chr20 had the most significant effects. A small number of dominance effects were detected for the production traits with far lower statistical significance than the additive effects and for fertility traits with similar statistical significance as the additive effects. Analysis of allelic effects revealed the presence of uni-allelic, asymmetric, and symmetric SNP effects and found the previously reported DGAT1 antagonism was an extreme antagonistic pleiotropy between fat yield and milk and protein yields among all SNPs in this study.

Original languageEnglish (US)
Article number412
JournalFrontiers in Genetics
Volume10
Issue numberMAY
DOIs
StatePublished - Jan 1 2019

Fingerprint

Genome-Wide Association Study
Single Nucleotide Polymorphism
Milk Proteins
Fertility
Fats
Pregnancy Rate
Lactation
Milk
Chromosomes
Phenotype

Keywords

  • Dairy cattle
  • Fertility
  • GWAS
  • Milk production
  • Somatic cell score

PubMed: MeSH publication types

  • Journal Article

Cite this

Jiang, J., Ma, L., Prakapenka, D., VanRaden, P. M., Cole, J. B., & Da, Y. (2019). A large-scale genome-wide association study in U.S. Holstein cattle. Frontiers in Genetics, 10(MAY), [412]. https://doi.org/10.3389/fgene.2019.00412

A large-scale genome-wide association study in U.S. Holstein cattle. / Jiang, Jicai; Ma, Li; Prakapenka, Dzianis; VanRaden, Paul M.; Cole, John B.; Da, Yang.

In: Frontiers in Genetics, Vol. 10, No. MAY, 412, 01.01.2019.

Research output: Contribution to journalArticle

Jiang, Jicai ; Ma, Li ; Prakapenka, Dzianis ; VanRaden, Paul M. ; Cole, John B. ; Da, Yang. / A large-scale genome-wide association study in U.S. Holstein cattle. In: Frontiers in Genetics. 2019 ; Vol. 10, No. MAY.
@article{bd1441789e0e490983c57944b78d4a16,
title = "A large-scale genome-wide association study in U.S. Holstein cattle",
abstract = "Genome-wide association study (GWAS) is a powerful approach to identify genomic regions and genetic variants associated with phenotypes. However, only limited mutual confirmation from different studies is available. We conducted a large-scale GWAS using 294,079 first-lactation Holstein cows and identified new additive and dominance effects on five production traits, three fertility traits, and somatic cell score. Four chromosomes had the most significant SNP effects on the five production traits, a Chr14 region containing DGAT1 mostly had positive effects on fat yield and negative effects on milk and protein yields, the 88.07-89.60 Mb region of Chr06 with SLC4A4, GC, NPFFR2, and ADAMTS3 for milk and protein yields, the 30.03-36.67 Mb region of Chr20 with C6 and GHR for milk yield, and the 88.19-88.88 Mb region with ABCC9 as well as the 91.13-94.62 Mb region of Chr05 with PLEKHA5, MGST1, SLC15A5, and EPS8 for fat yield. For fertility traits, the SNP in GC of Chr06, and the SNPs in the 65.02-69.43 Mb region of Chr01 with COX17, ILDR1, and KALRN had the most significant effects for daughter pregnancy rate and cow conception rate, whereas SNPs in AFF1 of Chr06, the 47.54-52.79 Mb region of Chr07, TSPAN4 of Chr29, and NPAS1 of Chr18 had the most significant effects for heifer conception rate. For somatic cell score, GC of Chr06 and PRLR of Chr20 had the most significant effects. A small number of dominance effects were detected for the production traits with far lower statistical significance than the additive effects and for fertility traits with similar statistical significance as the additive effects. Analysis of allelic effects revealed the presence of uni-allelic, asymmetric, and symmetric SNP effects and found the previously reported DGAT1 antagonism was an extreme antagonistic pleiotropy between fat yield and milk and protein yields among all SNPs in this study.",
keywords = "Dairy cattle, Fertility, GWAS, Milk production, Somatic cell score",
author = "Jicai Jiang and Li Ma and Dzianis Prakapenka and VanRaden, {Paul M.} and Cole, {John B.} and Yang Da",
year = "2019",
month = "1",
day = "1",
doi = "10.3389/fgene.2019.00412",
language = "English (US)",
volume = "10",
journal = "Frontiers in Genetics",
issn = "1664-8021",
publisher = "Frontiers Media S. A.",
number = "MAY",

}

TY - JOUR

T1 - A large-scale genome-wide association study in U.S. Holstein cattle

AU - Jiang, Jicai

AU - Ma, Li

AU - Prakapenka, Dzianis

AU - VanRaden, Paul M.

AU - Cole, John B.

AU - Da, Yang

PY - 2019/1/1

Y1 - 2019/1/1

N2 - Genome-wide association study (GWAS) is a powerful approach to identify genomic regions and genetic variants associated with phenotypes. However, only limited mutual confirmation from different studies is available. We conducted a large-scale GWAS using 294,079 first-lactation Holstein cows and identified new additive and dominance effects on five production traits, three fertility traits, and somatic cell score. Four chromosomes had the most significant SNP effects on the five production traits, a Chr14 region containing DGAT1 mostly had positive effects on fat yield and negative effects on milk and protein yields, the 88.07-89.60 Mb region of Chr06 with SLC4A4, GC, NPFFR2, and ADAMTS3 for milk and protein yields, the 30.03-36.67 Mb region of Chr20 with C6 and GHR for milk yield, and the 88.19-88.88 Mb region with ABCC9 as well as the 91.13-94.62 Mb region of Chr05 with PLEKHA5, MGST1, SLC15A5, and EPS8 for fat yield. For fertility traits, the SNP in GC of Chr06, and the SNPs in the 65.02-69.43 Mb region of Chr01 with COX17, ILDR1, and KALRN had the most significant effects for daughter pregnancy rate and cow conception rate, whereas SNPs in AFF1 of Chr06, the 47.54-52.79 Mb region of Chr07, TSPAN4 of Chr29, and NPAS1 of Chr18 had the most significant effects for heifer conception rate. For somatic cell score, GC of Chr06 and PRLR of Chr20 had the most significant effects. A small number of dominance effects were detected for the production traits with far lower statistical significance than the additive effects and for fertility traits with similar statistical significance as the additive effects. Analysis of allelic effects revealed the presence of uni-allelic, asymmetric, and symmetric SNP effects and found the previously reported DGAT1 antagonism was an extreme antagonistic pleiotropy between fat yield and milk and protein yields among all SNPs in this study.

AB - Genome-wide association study (GWAS) is a powerful approach to identify genomic regions and genetic variants associated with phenotypes. However, only limited mutual confirmation from different studies is available. We conducted a large-scale GWAS using 294,079 first-lactation Holstein cows and identified new additive and dominance effects on five production traits, three fertility traits, and somatic cell score. Four chromosomes had the most significant SNP effects on the five production traits, a Chr14 region containing DGAT1 mostly had positive effects on fat yield and negative effects on milk and protein yields, the 88.07-89.60 Mb region of Chr06 with SLC4A4, GC, NPFFR2, and ADAMTS3 for milk and protein yields, the 30.03-36.67 Mb region of Chr20 with C6 and GHR for milk yield, and the 88.19-88.88 Mb region with ABCC9 as well as the 91.13-94.62 Mb region of Chr05 with PLEKHA5, MGST1, SLC15A5, and EPS8 for fat yield. For fertility traits, the SNP in GC of Chr06, and the SNPs in the 65.02-69.43 Mb region of Chr01 with COX17, ILDR1, and KALRN had the most significant effects for daughter pregnancy rate and cow conception rate, whereas SNPs in AFF1 of Chr06, the 47.54-52.79 Mb region of Chr07, TSPAN4 of Chr29, and NPAS1 of Chr18 had the most significant effects for heifer conception rate. For somatic cell score, GC of Chr06 and PRLR of Chr20 had the most significant effects. A small number of dominance effects were detected for the production traits with far lower statistical significance than the additive effects and for fertility traits with similar statistical significance as the additive effects. Analysis of allelic effects revealed the presence of uni-allelic, asymmetric, and symmetric SNP effects and found the previously reported DGAT1 antagonism was an extreme antagonistic pleiotropy between fat yield and milk and protein yields among all SNPs in this study.

KW - Dairy cattle

KW - Fertility

KW - GWAS

KW - Milk production

KW - Somatic cell score

UR - http://www.scopus.com/inward/record.url?scp=85067882157&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85067882157&partnerID=8YFLogxK

U2 - 10.3389/fgene.2019.00412

DO - 10.3389/fgene.2019.00412

M3 - Article

VL - 10

JO - Frontiers in Genetics

JF - Frontiers in Genetics

SN - 1664-8021

IS - MAY

M1 - 412

ER -